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Abstract

How much is secrecy worth and how many times can a secret be sold?
This paper introduces a novel method to properly quantify the value of se-
crecy for the first time and finds that it is supported by empirical evidence.
Additionally, it introduces another novel method to model and quantify
the Privacy Multiplier, that is, the additional value obtained from the use
of privacy-preserving techniques when offering secret data to potentially
distrustful third-parties. Altogether, both results close open questions
regarding the quantification of the economic impact of the practical ap-
plication of secure computation technologies, particularly on blockchains.
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1 Introduction
Traditionally, the estimation of the value of a secret is based on how much
would be lost if the secret was revealed: for example, $500 billion in raw
innovation is stolen from U.S. companies each year[Phi13] (i.e., trade secrets,
research and development and products that give companies a competitive
advantage). This method for valuating secrets exacerbates the already risk-averse
judgement[GHM15, HR08] of the secret holder. And since most information
is not publicly accesible[Ber01] and intentionally hidden, it’s a very natural
question to ask for the valuation of secrecy itself.

Withholding information, keeping information secret has an opportunity cost
due to the self-imposed restriction on trading said secret information. Therefore,
a discount must be applied to the full market value of secret data. This insight
forms the basis for the application of advanced techniques from financial valuation
to quantify the value of secrecy: this paper uses forward-start put options to
upper bound the secrecy discount and price it using the Black-Scholes model,
deriving a closed-form formula that is satisfactorily tested on estimations of the
valuation of Swiss bank secrecy. This result is useful to estimate how much
additional value could be extracted from the vast amounts of data generated
and stored each year.

We then study how many times a secret can be sold to different buyers
(i.e., the Privacy Multiplier) knowing that the secret will percolate through a
network of buyers until it’s no longer valuable because it has been incorporated
into market prices. Our results provide a concrete, computable model in a
rational-expectations equilibrium of the Privacy Multiplier.

Finally, we point out that secure computation technologies can be used to
keep information secret while allowing others to use said information: their use
compensates the secrecy discount and further multiplies the number of times
secret data can be sold, especially in a digital world where the half-life of se-
crets is declining[Swi15]. These privacy-preserving techniques are indispensable
in the setting of permissionless blockchains because they publish all the data
of all transactions in the open by default, including the executed smart con-
tracts: private smart contracts give rise to Cryptographically Secure Financial
Instruments[Sá15], which benefit their traders and holders by compensating the
secrecy discount and applying the Privacy Multiplier.

1.1 Contributions
The main and novel contributions are:

• A new method to value secrecy as a discount on withheld information3.

• A new method to value the Privacy Multiplier4, that is, the additional
value obtained when offering data to third-parties with privacy-preserving
techniques. And although it’s widely acknowledged in cryptographic
research that this could be feasible, there are no previous written records
of this practice.
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2 Related Literature
Previous research has focused on personal and consumer privacy[HK05], not on
the value of data as a financial asset:

• Consumer’s financial information[Not03] and the implication of opt-in
and opt-out policies from the point of view of economic theory and the
assignment of property rights.

• The valuation of personal privacy using option privacy theory[BB09b,
BB09a].

3 The Secrecy Discount

3.1 Model
A buyer of data that is easily valuable and tradeable at a price P0 (e.g., customer
lists, quotes, and financial series) must keep it secret for a period of time T :
consequently, he must be willing to pay a discounted price C for the classified
information, lower than P0. To better accept the deal, a derivative D could be
combined with the classified information C such that both would be valued at
a higher price than the unrestricted information P0, the price of the derivative
constituting an upper bound for the secrecy discount:

C +D ≥ P0 (3.1)

In the same way, the buyer could be an owner of data that wants to keep
it secret or any other arrangement in which a secrecy discount applies: the
restriction to not leak/sell any secret could be self-imposed (e.g., commercial
data) or set by an external agent (i.e., classified data from a governmental
agency). Additionally, the start date of the derivative D can be chosen at any
time t before the expiry date T because the data is secret and the owner is
trading on private information: forward-start put options are the best fit for the
previously specified derivative, converting to an European put option with the
strike price being the forward price of the data at time t and remaining time to
maturity T − t.

3.2 Assumptions
To ease analysis, a perfect market for the data is assumed:

• Uninterrupted, frictionless trading with no transactions costs and perfectly
divisible data.

• Unlimited borrowing and lending at risk-free rate and short selling is
allowed.

• Arbitrage is not allowed.
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Additionally, there is a risk-free zero-coupon bond B with dynamics

dB (t) = r (t)B (t)

for an interest rate process r (t).

3.3 Analytical Upper Bound
The price of a put option with strike price K, maturity date T and spot price
Pt is denoted by

Prt (Pt,K, T ) (3.2)

If for every ε > 0, the option-pricing function Pt satisfies the following identity

εPrt (Pt,K, T ) = Prt (εPt, εK, T ) (3.3)

then it’s said to be homogeneous of degree one regarding the spot price Pt and
the strike price K. And by the application of this property, the price of the put
option Prt to be received when the start date t is known is proportional to the
future spot price Pt:

Prt

(
Pt, Pte

´ T
t

r(s)d(s).T
)

= Pt · Prt
(

1, e
´ T
t

r(s)d(s), T
)

(3.4)

The supremum of the put option prices over [0, T ] is defined by

St = sup
0≤r≤T

Prt

(
1, e

´ T
t

r(s)d(s), T
)

(3.5)

The upper bound of the secrecy discount is given by St because the holder of
the secret data can choose the start time t of the derivative and is unknown to
the counterparty, who can hedge the risk by purchasing St units of secret data
at the issuance date and maintain them until the holder announces the start
date t: then, the counterparty must deliver a put option but its current price
will less than or equal to the value of St units of secret data,

Prt

(
Pt, Pte

´ T
t

r(s)d(s), T
)

= Pt · Prt
(

1, e
´ T
t

r(s)d(s), T
)
≤ Pt · St (3.6)

Therefore, the upper bound of the secrecy discount is given by ST because the
price of the put option at the initial time 0 is no larger than P0 · ST and the
opportunity cost due to the restraint to maintain the secret is precisely given by
the price of the forward-start put option with a start date t under the choice of
the secret holder.

3.4 Closed-Form Expression
A closed-form expression can be provided for the upper bound on the secrecy
discount under the assumption that the spot price follows a time-homogenous
process such that

Prt

(
1, e

´ T
t

r(s)ds, T
)

= Pr0

(
1, e

´ T−t
0

r(s)d(s), T − t
)

(3.7)
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Then, the upper bound on the secrecy discount is given by

ST = sup
0≤t≤T

Prt

(
1, e

´ T
t

r(s)d(s), T
)

= sup
0≤t≤T

Pr0

(
1, e

´ T−t
0

r(s)d(s), T − t
)

= Pr0

(
1, e

´ T
0

r(s)d(s), T
)

(3.8)
because the price of the put option is an increasing function of the restriction
period T (i.e., T1 ≥ T2 implies that ST1 ≥ ST2). A closed-form formula for the
upper bound on the secrecy discount can be derived from the Black-Scholes
model for asset pricing because it’s time-homogeneous. Start by assumption
that the price of the secret data Pt follows the conventional geometric diffusion
process

dP

P
= (r − y) dt+ σdW (3.9)

where W is a standard Wiener process, r is the constant continuously com-
pounded risk-free rate, y is the constant continuously compounded dividend
yield and σ is the constant volatility of the price of the secret data.

The closed-form formula for the secrecy discount is given by

ST = e−yT

(
2Φ

(
σ
√
T

2

)
− 1

)
(3.10)

as obtained using equation 3.8 on the Black-Scholes price of an European put
option with time to maturity T and strike price equal to the forward price
P0e

(r−y)T at time T , and Φ is the cumulative normal distribution of mean 0 and
standard deviation 1.

3.5 Numerical Interpretation
The following table shows the numerical evaluation of formula 3.10 for volatilities
σ ranging from 0.1 to 0.6 and a dividend yield y of 1% as suggested by the
paper[CHM15] studying changes in dividend yields from managers’ private
information:

Period 0.1 0.2 0.3 0.4 0.5 0.6
3 months 1.99% 3.98% 5.96% 7.95% 9.92% 11.89%
6 months 2.81% 5.61% 8.40% 11.19% 13.96% 16.72%
9 months 3.43% 6.85% 10.26% 13.65% 17.01% 20.35%
1 year 3.95% 7.89% 11.80% 15.69% 19.54% 23.35%
2 years 5.53% 11.02% 16.47% 21.83% 27.09% 32.21%
3 years 6.70% 13.34% 19.89% 26.30% 32.51% 38.49%

These estimations of the secrecy discount are in line with the estimations
of the valuation of Swiss bank secrecy obtained from a natural experiment in
another study[DHZ12]: 8-14% (bolded). Please note that this model should also
be valid for valuating trade secrets, but there is not enough empirical data to
corroborate this claim[RSV15].
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4 The Privacy Multiplier
Definition. The Privacy Multiplier is the additional value obtained from using
privacy-preserving techniques (SECCOMP) when offering data to third-parties,
denoted by

Privacy Multiplier =
Revenue[SECCOMP = 1]

Revenue[SECCOMP = 0]

In many cases, secret data can only be sold one time without privacy-preserving
techniques (SECCOMP = 0) because the holder exhausts all exclusivity, as in the
first-sale doctrine[tUSC76], or it can be sold multiple times but with decreasing
prices as the information gets incorporated into the market, depreciating until the
information becomes common knowledge. Instead, privacy-preserving techniques
(SECCOMP=1) enables multiple sales and contains the depreciation rate.

The concept of the Privacy Multiplier is directly inspired in other multipliers in
economics, that is, a factor of proportionality measuring how much an endogenous
variable changes in response to a change in some exogenous variable: the
misinterpreted money multiplier[CD10], the fiscal multiplier[Kah31] and the
Hansen-Samuelson multiplier[Sam39].

4.1 Model
Recent economic studies explicitly model how secret information is generated by
market participants, disseminated and finally incorporated into prices:

• Decentralized trading models for over-the-counter markets[GLT09, BK17,
Wal16]

• Other models for broker networks[GLT17]

This paper incorporates the model from[AC16] due to its simplicity, although
any of the previously listed models could also be used.

Consider an rational-expectation economy[GS80] with investors i ∈ [0, 1] and
T trading dates divided in t = 0, 1, ..., T − 1 with final liquidation date T . There
is a risky security with an unobservable payoff U realized on the liquidation date
and following a normal distribution with zero mean and precision H. Prior to
the first trading session t = 0, each investor i obtains a private signal about the
asset payoff:

zi = U + εi

where εi is distributed normally and independently of U , has zero mean, precision
S and is independent of εk if k 6= i.

Information percolation theory[DGM09] is used to describe how information
flows at an increasing rate with its precision becoming heterogeneous across
agents: infinitesimally small agents meet each other randomly and share their
initial signal and other signals received during previous meetings; meetings
take place continuously at Poisson arrival times with meeting intensity λ and
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mi
t − 1 agents per meeting. Recent studies largely support the model offered by

information percolation theory[HM17].
The cross-sectional distribution of the number of additional signals, πt, equals

the number ωi
t of signals received by each agent i between trading dates t− 1

and t: this distribution captures the heterogeneity in information precisions
introduced by random meetings. The investor maximizes her expected utility of
wealth, W i

T , choosing her position in the risky asset, Di
t, at each trading date:

max
Di
t

E
[
e−

1
τW

i
T |F i

t

]
subject to

W i
T = XiP0 +

T−2∑
t=0

[
Di

t (Pt+1 − Pt)
]

+Di
T−1 (U − PT−1)

where F i
t denotes the information set of investor i at time t containing private

signals and prices as public signals.
The cross-sectional average of the number of additional signals at time t is

defined by
Ωt =

∑
n∈N

πt (n)n

Regarding the economy, investors have exponential utility with a common
coefficient of absolute risk aversion 1/τ , τ denoting the investor’s risk tolerance.
Trading takes places at times t = 0, 1, ..., T − 1 and consumption at time t = T ,
when the asset payoff is realized: Xi denotes the quantity of the risky asset
endowed to each investor i at time t = 0. The aggregate per capita supply of
the risky asset at time t = 0 is denoted by

X0 =

ˆ 1

0

Xidi

and is normally and independently distributed with zero mean and precision ϕ;
the incremental net supply of liquidity traders, Xt, is normally distributed with
zero mean and precision Φ. The normalized price signals are denoted by

Qt = U − 1

τSΩt
Xt

Theorem. (Rational-expectations Equilibrium). There exists a partially reveal-
ing rational-expectations equilibrium in the T trading session economy on which
the price of the risky asset, Pt, for t = 0, ..., T − 1 is given by

Pt =
Kt −H
Kt

U −
t∑

j=0

1 + τ2SΩjϕ

τKT
Xj
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The individual and average market precisions, Ki
t and Kt, are given by

Ki
t = H +

t∑
j=0

Sωi
j +

t∑
j=0

τ2S2Ω2
jϕ

Kt = H +

t∑
j=0

SΩj +

t∑
j=0

τ2S2Ω2
jϕ

and the individual asset demands, Di
t, is given by

Di
t = τKi

t

(
E
[
U |F t

i

]
− Pt

)
= τ

S t∑
j=0

ωi
jZ

i
j + τ2S2ϕ

t∑
j=0

Ω2
jQj −Ki

tPt


The previous theorem enables us to obtain a concrete, computable definition

of the Privacy Multiplier:

Corollary. The Privacy Multiplier of secret data diffused according to informa-
tion percolation theory in a rational-expectations equilibrium in the T trading
session economy is given by

Privacy Multiplier =

T∑
t=0

∑
i

(
Pt [SECCOMP = 1] ·Di

t [SECCOMP = 1]
)

T∑
t=0

∑
i

(
Pt [SECCOMP = 0] ·Di

t [SECCOMP = 0]
)

where the individual asset demands

Di
t [SECCOMP = 1]� Di

t [SECCOMP = 0] , (∀i, t)

and the meeting intensity

λ [SECCOMP = 1]� λ [SECCOMP = 0]

and number of agents per meeting

mi
t [SECCOMP = 1]� mi

t [SECCOMP = 0] , (∀i, t)

4.2 Empirical Study
Studies on insider trading[Ahe15] provide an informative window on how valuable
information percolates investor networks until markets incorporate all the relevant
information and it loses relevance: the following table summarizes the diffusion
of relevant trading information across 183 insider networks collected by the
Securities and Exchange Commission (SEC) and the Department of Justice
(DOJ) between 2009 and 2013.
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Order in Tip Chain
Statistic 1 2 3 4

Tippee house value (Median - $1000s) 668.6 724.5 833.7 1072
Tipper house value (Median - $1000s) 811.7 840.1 758.5 1072
Amount invested (Average - $1000s) 4852 2639 1618.6 1726.1
Amount invested (Median - $1000s) 200.4 250.1 280.1 492.7

Gross profit (Average - $1000s) 759.9 1028.9 230.7 1538.1
Gross profit (Median - $1000s) 17.6 36.3 39.5 86

Tip return (Average - %) 46 43.5 29.2 23
Tip return (Median - %) 25.2 27.9 28.2 18.8

Use shares (%) 50.8 56.2 77.1 76.4
Use options (%) 27 23.4 16.8 21.8

Insider volume/total volume (%) 2.8 4.7 2.9 5.4
Time from information to tip (Days) 12.1 9.2 5 0.4
Tipped passed on received day (%) 46.5 62.7 49.5 92.1
Holding period (Average - days) 13.9 16.8 11.3 9.1
Holding period (Median - days) 5.2 7 4 5

Tippee degree centrality 2.9 2.3 2 1.8
Tipper degree centrality 1.8 4.3 5 4.6

Particularly relevant to this work is the decline of trading returns over the tip
chain, indicating that the information is being incorporated into the markets: the
investments of the initial tippee returns 46% on average and 25.2% on median;
by the fourth link and subsequents, the returns have decreased to 23% for the
average and 18.8% for the median. Median gross profits rise from $17,600 to
$86,000 per tip, but because the median amount invested rises from $200,400 for
the first tippee to $492,700 for the fourth and subsequents.

The speed of the flow of the information over the tip chain also increases
with time: the original source waits 12.1 days before tipping, 9.2 days the second
linked, 5 at the third link and 0.4 days for the fourth and subsequents links. The
fraction of tippers who tip the same day that they receive the information is
46.5%, increasing 92.1% in the fourth and subsequent links, implying that the
holding period between when the tippee receives the information and the event
date declines over time, from an average of 13.9 days to 9.1 days.

Tippers in later links are more central figures, having more information
connections and holding more tipping links to all the other insiders, spreading
the information to the periphery of the network: in the first link, tippers have 1.8
connections, 4.3 in the second and 4.6 in the fourth and subsequents. Conversely,
the tippee’s centrality decreases from 2.9 to 1.8.

This empirical data shows the percolation of privileged information through
investor networks until it gets incorporated into prices thanks to the investigations
conducted by the SEC and the DOD: comparable dynamics of information
diffusion could be expected in other law-abiding settings. And discussed on next
section5, privacy-preserving techniques could be used to increase the number
of times private information is offered to third parties while containing its
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depreciation.

5 Applications of Secure Computation and Blockchains
This subsection provides a succinct review of modern secure computation tech-
nologies: more detailed reviews can be found on these papers[NVF+17, NVA+17,
ABPP15].

Secure computation is an active subfield of cryptography research that studies
methods for computing functions of private inputs without revealing the inputs
themselves hidden, protecting data during outsourced processing or sharing and
removing third parties that could be subverted. Secure computation can be
done in many ways, using one or a combination of modern encryption techniques
that enable computation on encrypted data: multi-party computation (secret
sharing, garbled circuits), fully homomorphic encryption (FHE) and oblivious
random access machines (ORAM). Each of these technologies has advantages
and disadvantages: for example, MPC techniques are faster than homomorphic
encryption, but require much more network interaction between the parties.

Special mention deserves another technique, differential privacy: it defends
against an adversary that observes the output of statistical queries to a database
trying to infer information and compared to the previously mentioned technolo-
gies, it can prevent from inferring and learning too much information from the
encrypted dataset using indirect queries. Differential privacy usually considers
worst-case guarantees, requiring privacy against an adversary who already knows
the entire database except for a single row. And although differential privacy
is efficient, it also introduces statistical noise to the results of the queries, thus
it’s constrained to applications using numerical data that tolerates the imprecise
results.

For the purpose of this paper, it’s almost immediate that secure computation
techniques could be used to sell/rent access to secret data without revealing
anything about it: this would remove the secrecy discount levied on secret data,
automatically increasing its value. What is more, the same information could be
sold multiple times to different parties because secret data would not be directly
revealed (i.e., the Privacy Multiplier) and that more than justifies the costs
associated with the deployment of secure computation technologies. Note that
this scenario must be technically solved in practice: for example, the recent case
of “Collateral Analytics v. Nationstar Mortgage”[col17] relates to a database
provider of real estate information provided to thousands of customers that was
fully downloaded by one of them to start a competitor.

Furthermore, we must consider the impact of blockchains[BMC+15, FRS15,
FRS16], distributed ledgers that record transactions between two or more parties
in a verifiable and permanent way, keeping a continuously growing list of records
which are linked. Most blockchains offer a programming language to implement
smart contracts, that is, programmable contracts that are executed or enforced
by the blockchain, without human interaction: the execution is done publicly,
for anyone to review it, but smart contracts could also be executed with secure
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computation techniques[Sá17, Sá15]. In this way, vast amounts of secret data
would surface on blockchains, a setting where it’s natural to sell information.

6 Conclusion
We introduce a novel method to properly quantify the value of secrecy, and
another novel method to model and quantify the Privacy Multiplier as secret
data percolates through a network of investors: we also find empirical support
for both methods.

This analysis reinforces the usefulness of secure computation in decentralized
settings, now well grounded in economic terms.

References
[ABPP15] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullo-

nen. Maturity and Performance of Programmable Secure Com-
putation. Cryptology ePrint Archive, Report 2015/1039, 2015.
https://eprint.iacr.org/2015/1039.

[AC16] Daniel Andrei and Julien Cujean. Information Percolation, Momen-
tum and Reversal, 2016. https://www.gsb.stanford.edu/sites/
gsb/files/updated_paper.pdf.

[Ahe15] Kenneth R. Ahern. Information Networks: Evidence from Illegal In-
sider Trading Tips, 2015. https://fisher.osu.edu/supplements/
10/15846/INFONET.2015.02.12.pdf.

[BB09a] Stefan Berthold and Rainer Böhme. Slides of Valuating Privacy with
Option Pricing Theory, 2009. http://www1.inf.tu-dresden.de/
~rb21/publications/BB2009_PrivacyOptions_slides.pdf.

[BB09b] Stefan Berthold and Rainer Böhme. Valuating Privacy with Option
Pricing Theory, 2009. http://weis09.infosecon.net/files/128/
paper128.pdf.

[Ber01] Michael K. Bergman. The Deep Web: Surfacing Hidden Value, 2001.
http://dx.doi.org/10.3998/3336451.0007.104.

[BK17] Ana Babus and Péter Kondor. Trading and Information Diffusion
in Over-the-Counter Markets, 2017. https://bfi.uchicago.edu/
sites/default/files/file_uploads/KONDOR.pdf.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. SoK: Research Perspectives
and Challenges for Bitcoin and Cryptocurrencies, 2015. http://www.
jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf.

11

https://eprint.iacr.org/2015/1039
https://www.gsb.stanford.edu/sites/gsb/files/updated_paper.pdf
https://www.gsb.stanford.edu/sites/gsb/files/updated_paper.pdf
https://fisher.osu.edu/supplements/10/15846/INFONET.2015.02.12.pdf
https://fisher.osu.edu/supplements/10/15846/INFONET.2015.02.12.pdf
http://www1.inf.tu-dresden.de/~rb21/publications/BB2009_PrivacyOptions_slides.pdf
http://www1.inf.tu-dresden.de/~rb21/publications/BB2009_PrivacyOptions_slides.pdf
http://weis09.infosecon.net/files/128/paper128.pdf
http://weis09.infosecon.net/files/128/paper128.pdf
http://dx.doi.org/10.3998/3336451.0007.104
https://bfi.uchicago.edu/sites/default/files/file_uploads/KONDOR.pdf
https://bfi.uchicago.edu/sites/default/files/file_uploads/KONDOR.pdf
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf
http://www.jbonneau.com/doc/BMCNKF15-IEEESP-bitcoin.pdf


[CD10] Seth B. Carpenter and Selva Demiralp. Money, Reserves, and the
Transmission of Monetary Policy: Does the Money Multiplier Ex-
ist?, 2010. https://www.federalreserve.gov/pubs/feds/2010/
201041/201041pap.pdf.

[CHM15] Amedeo De Cesari and Winifred Huang-Meier. Divi-
dend Changes and Stock Price Informativeness, 2015.
https://www.research.manchester.ac.uk/portal/files/
23959356/POST-PEER-REVIEW-NON-PUBLISHERS.PDF.

[col17] Collateral Analytics v Nationstar Mortgage, (N.D. Cal., No
18-cv-19), 2017. https://cdn.patentlyo.com/media/2018/01/
CollateralAnalyticsComplaint.pdf.

[DGM09] Darrell Duffie, Gaston Giroux, and Gustavo Manso. Information
Percolation, 2009. https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2770313.

[DHZ12] François-Xavier Delaloye, Michel A. Habib, and Alexandre Ziegler.
Swiss banking secrecy: the stock market evidence. Financial Markets
and Portfolio Management, 26(1):143–176, Mar 2012. https://doi.
org/10.1007/s11408-011-0178-6.

[FRS15] Pasquale Forte, Diego Romano, and Giovanni Schmid. Beyond Bit-
coin - Part I: A critical look at blockchain-based systems. Cryptology
ePrint Archive, Report 2015/1164, 2015. https://eprint.iacr.
org/2015/1164.

[FRS16] Pasquale Forte, Diego Romano, and Giovanni Schmid. Beyond Bit-
coin – Part II: Blockchain-based systems without mining. Cryptology
ePrint Archive, Report 2016/747, 2016. https://eprint.iacr.org/
2016/747.

[GHM15] Néstor Gandelman and Rubén Hernández-Murillo. Risk Aversion
at the Country Level, 2015. https://files.stlouisfed.
org/files/htdocs/publications/review/2015/q1/53-
66GandelmanHernandez.pdf.

[GLT09] Mikhail Golosov, Guido Lorenzoni, and Aleh Tsyvinski.
Decentralized Trading with Private Information, 2009.
https://economics.yale.edu/sites/default/files/files/
Faculty/Tsyvinski/decentralized-trade2.pdf.

[GLT17] Mikhail Golosov, Guido Lorenzoni, and Aleh Tsyvinski. The Rele-
vance of Broker Networks for Information Diffusion in the Stock
Market, 2017. http://w4.stern.nyu.edu/finance/docs/pdfs/
Seminars/1701/1701w-Kermani.pdf.

12

https://www.federalreserve.gov/pubs/feds/2010/201041/201041pap.pdf
https://www.federalreserve.gov/pubs/feds/2010/201041/201041pap.pdf
https://www.research.manchester.ac.uk/portal/files/23959356/POST-PEER-REVIEW-NON-PUBLISHERS.PDF
https://www.research.manchester.ac.uk/portal/files/23959356/POST-PEER-REVIEW-NON-PUBLISHERS.PDF
https://cdn.patentlyo.com/media/2018/01/CollateralAnalyticsComplaint.pdf
https://cdn.patentlyo.com/media/2018/01/CollateralAnalyticsComplaint.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2770313
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2770313
https://doi.org/10.1007/s11408-011-0178-6
https://doi.org/10.1007/s11408-011-0178-6
https://eprint.iacr.org/2015/1164
https://eprint.iacr.org/2015/1164
https://eprint.iacr.org/2016/747
https://eprint.iacr.org/2016/747
https://files.stlouisfed.org/files/htdocs/publications/review/2015/q1/53-66GandelmanHernandez.pdf
https://files.stlouisfed.org/files/htdocs/publications/review/2015/q1/53-66GandelmanHernandez.pdf
https://files.stlouisfed.org/files/htdocs/publications/review/2015/q1/53-66GandelmanHernandez.pdf
https://economics.yale.edu/sites/default/files/files/Faculty/Tsyvinski/decentralized-trade2.pdf
https://economics.yale.edu/sites/default/files/files/Faculty/Tsyvinski/decentralized-trade2.pdf
http://w4.stern.nyu.edu/finance/docs/pdfs/Seminars/1701/1701w-Kermani.pdf
http://w4.stern.nyu.edu/finance/docs/pdfs/Seminars/1701/1701w-Kermani.pdf


[GS80] Sanford J. Grossman and Joseph E. Stiglitz. On the Impossibility
of Informationally Efficient Markets, 1980. http://www-personal.
umich.edu/~venky/talks/stiglitz.pdf.

[HK05] Benjamin E. Hermalin and Michael L. Katz. Privacy,
Property Rights and Efficiency: The Economics of Privacy
as Secrecy, 2005. https://pdfs.semanticscholar.org/4fa7/
37a528faf673478960ebfc48ae2433d36ac1.pdf.

[HM17] Björn Hagströmer and Albert J. Menkveld. A Network Map of
Information Percolation, 2017. https://uclouvain.be/cps/ucl/
doc/core/documents/ES_Menkveld.pdf.

[HR08] Glenn W. Harrison and E. Elisabet Rutström. Risk Aversion in
the Laboratory, 2008. http://static.luiss.it/hey/ambiguity/
papers/Harrison_Rutstrom_2008.pdf.

[Kah31] R. F. Kahn. The Relation of Home Investment to Unemployment.
The Economic Journal, 41(162):173–198, 1931. http://www.jstor.
org/stable/2223697.

[Not03] Loretta Nott. Financial Privacy: An Economic Perspective, 2003.
https://www.epic.org/privacy/glba/RL31758.pdf.

[NVA+17] Peter S. Nordholt, Nikolaj Volgushev, Mark Abspoel, Meilof Veenin-
gen, Frank Blom, Niek J. Bouman, and Mykola Pechenizkiy.
D2.1 State of the Art Analysis of MPC-Based Big Data Analyt-
ics, 2017. https://www.soda-project.eu/wp-content/uploads/
2017/02/SODA-D2.1-WP2-State-of-the-art.pdf.

[NVF+17] Peter S. Nordholt, Nikolaj Volgushev, Prastudy Fauzi, Clau-
dio Orlandi, Peter Scholl, Mark Simkin, Meilof Veenin-
gen, Niek Bouman, and Berry Schoenmakers. D1.1 State
of the Art Analysis of MPC Techniques and Frameworks,
2017. https://www.soda-project.eu/wp-content/uploads/
2017/02/SODA-D1.1-WP1-State-of-the-art.pdf.

[Phi13] Joshua Philipp. The Staggering Cost of Economic Espionage Against
the US, 2013. https://www.theepochtimes.com/the-staggering-
cost-of-economic-espionage-against-the-us_326002.html.

[RSV15] Gavin C. Reid, Nicola Searle, and Saurabh Vishnubhakat. What’s It
Worth to Keep a Secret?, 2015. https://scholarship.law.duke.
edu/cgi/viewcontent.cgi?article=1273&context=dltr.

[Sam39] Paul A. Samuelson. Interactions between the Multiplier Analysis and
the Principle of Acceleration. The Review of Economics and Statistics,
21(2):75–78, 1939. http://www.jstor.org/stable/1927758.

13

http://www-personal.umich.edu/~venky/talks/stiglitz.pdf
http://www-personal.umich.edu/~venky/talks/stiglitz.pdf
https://pdfs.semanticscholar.org/4fa7/37a528faf673478960ebfc48ae2433d36ac1.pdf
https://pdfs.semanticscholar.org/4fa7/37a528faf673478960ebfc48ae2433d36ac1.pdf
https://uclouvain.be/cps/ucl/doc/core/documents/ES_Menkveld.pdf
https://uclouvain.be/cps/ucl/doc/core/documents/ES_Menkveld.pdf
http://static.luiss.it/hey/ambiguity/papers/Harrison_Rutstrom_2008.pdf
http://static.luiss.it/hey/ambiguity/papers/Harrison_Rutstrom_2008.pdf
http://www.jstor.org/stable/2223697
http://www.jstor.org/stable/2223697
https://www.epic.org/privacy/glba/RL31758.pdf
https://www.soda-project.eu/wp-content/uploads/2017/02/SODA-D2.1-WP2-State-of-the-art.pdf
https://www.soda-project.eu/wp-content/uploads/2017/02/SODA-D2.1-WP2-State-of-the-art.pdf
https://www.soda-project.eu/wp-content/uploads/2017/02/SODA-D1.1-WP1-State-of-the-art.pdf
https://www.soda-project.eu/wp-content/uploads/2017/02/SODA-D1.1-WP1-State-of-the-art.pdf
https://www.theepochtimes.com/the-staggering-cost-of-economic-espionage-against-the-us_326002.html
https://www.theepochtimes.com/the-staggering-cost-of-economic-espionage-against-the-us_326002.html
https://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1273&context=dltr
https://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1273&context=dltr
http://www.jstor.org/stable/1927758


[Swi15] Peter Swire. The Declining Half-Life of Secrets and the Future of Sig-
nals Intelligence, 2015. https://www.newamerica.org/documents/
1459/2.24Declining_Half_Life_of_Secrets.pdf.

[Sá15] David Cerezo Sánchez. PCT/IB2015/055776 - Cryptographically
Secure Financial Instruments, 2015. https://www.calctopia.com/
papers/csfi.pdf.

[Sá17] David Cerezo Sánchez. Raziel: Private and Verifiable Smart Con-
tracts on Blockchains. Cryptology ePrint Archive, Report 2017/878,
2017. https://eprint.iacr.org/2017/878.

[tUSC76] 94th United States Congress. Copyright Law of the United States
(Title 17), Chapter 1, 1976. https://www.copyright.gov/title17/
92chap1.html#109.

[Wal16] Johan Walden. Trading, Profits, and Volatility in a Dynamic In-
formation Network Model, 2016. http://faculty.haas.berkeley.
edu/walden/HaasWebpage/dynamicnetworkswp2.pdf.

14

https://www.newamerica.org/documents/1459/2.24Declining_Half_Life_of_Secrets.pdf
https://www.newamerica.org/documents/1459/2.24Declining_Half_Life_of_Secrets.pdf
https://www.calctopia.com/papers/csfi.pdf
https://www.calctopia.com/papers/csfi.pdf
https://eprint.iacr.org/2017/878
https://www.copyright.gov/title17/92chap1.html#109
https://www.copyright.gov/title17/92chap1.html#109
http://faculty.haas.berkeley.edu/walden/HaasWebpage/dynamicnetworkswp2.pdf
http://faculty.haas.berkeley.edu/walden/HaasWebpage/dynamicnetworkswp2.pdf

	Introduction
	Contributions

	Related Literature
	The Secrecy Discount
	Model
	Assumptions
	Analytical Upper Bound
	Closed-Form Expression
	Numerical Interpretation

	The Privacy Multiplier
	Model
	Empirical Study

	Applications of Secure Computation and Blockchains
	Conclusion

