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Abstract

The Holy Grail of a decentralised stablecoin is achieved on rigor-
ous mathematical frameworks, obtaining multiple advantageous proofs:
stability, convergence, truthfulness, faithfulness, and malicious-security.
These properties could only be attained by the novel and interdisciplinary
combination of previously unrelated fields: model predictive control, deep
learning, alternating direction method of multipliers (consensus-ADMM),
mechanism design, secure multi-party computation, and zero-knowledge
proofs. For the first time, this paper proves:

- the feasibility of decentralising the central bank while securely pre-
serving its independence in a decentralised computation setting

- the benefits for price stability of combining mechanism design, prov-
able security, and control theory, unlike the heuristics of previous stable-
coins

- the implementation of complex monetary policies on a stablecoin,
equivalent to the ones used by central banks and beyond the current fixed
rules of cryptocurrencies that hinder their price stability

- methods to circumvent the impossibilities of Guaranteed Output De-
livery (G.O.D.) and fairness: standing on truthfulness and faithfulness, we
reach G.O.D. and fairness under the assumption of rational parties

As a corollary, a decentralised artificial intelligence is able to conduct
the monetary policy of a stablecoin, minimising human intervention.

1 Introduction
The Holy Grail of a stablecoin[Her18], an asset with all the benefits of decentrali-
sation but none of the volatility, remains the most elusive single-horned creature
of the cryptocurrency market. In fact, price stability is the most wanted feature
of a cryptocurrency: in a recent survey[BCC+19], hedging against depreciation
risk (i.e., price stability) was the most important attribute and it has a much
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higher feature than anonymity (40% vs. 1%) or illiquidity risk; however, sub-
jects of the survey assigned to the anonymous medium-of-payment a value on
average only 1.44% higher than to the non-anonymous medium-of-payment.

In monetary economics, monetary policy rules refer to a set of rule of thumb
that the central bank is committed to, so it can maintain the price stabil-
ity of a currency (Taylor rule, McCallum rule, inflation targeting, fixed ex-
change rate targeting, nominal income targeting, etc). However, the fixed rules
for the emission of most cryptocurrencies[Mou19] cannot maintain price sta-
bility: the inflexibility of their emission rules and their inelasticity of supply
provoke part of the high volatility of the cryptocurrency market; their lack of
good monetary rules preclude their wide used as money[Cac18] as they lack
clear a clear focus on monetary equilibrium; instead, they feature technical
rules for stabilising the difficulty of mining[NOH19], but not monetary rules.
Stablecoins[MIOT19, BKP19, PHP+19] were born to explicitly solve the volatil-
ity problem of cryptocurrencies: however, their current formulation relies on
heuristics[Mak19, KKMP19, Lee14, SI19, IKMS14] without a general mathe-
matical framework within which advantageous properties can be mathemati-
cally proven such as stability and convergence. Stablecoins lacking stability
regimes and/or convergence guarantees suffer from the instabilities of unstable
domains and deleveraging spirals that cause illiquidity during crises[KMM19]:
these shortcomings cause price volatility, making cryptocurrencies unusable as
short-term stores of value and means of payment, increasing barriers to adop-
tion.

This paper introduces the novel combination of multiple mathematical frame-
works in order to design a decentralised stablecoin by inheriting multiple useful
properties of said frameworks: stability, convergence, truthfulness, faithfulness,
and malicious-security.

Contributions The main and novel contributions are:

• first formal treatment of decentralised stablecoin within which multiple
mathematical properties can be proven: stability, convergence, truthful-
ness, faithfulness, and malicious-security.

• dynamical models of economic systems: currency prediction with deep
learning, and stabilisation and emission of stablecoins.

• decomposition of Model Predictive Controllers with consensus-ADMM for
their implementation in decentralised networks (i.e., blockchains).

• protection against malicious adversaries in said decentralised networks.

• from mechanism design, proofs to guarantee truthfulness for all the parties
involved and faithfulness of the execution for the decentralised implemen-
tation.
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2 Related
Previous cryptocurrencies with a controlled money suppy similar to a cen-
tral bank currency were centralised[DM15, She16, HLX17, WKCC18]: for first
time, this paper solves the decentralisation of the monetary policy, achieving a
fully decentralised cryptocurrency when combined with a public permissionless
blockchain.

Most stablecoins are centralised: the few ones that are decentralised (e.g.,
[Mak19]), rely on heuristics without a general mathematical framework within
which advantageous properties can be mathematically proven such as stability
and convergence.

3 Background
This section provides a brief introduction to the main technologies of the decen-
tralised stablecoin: blockchains, model predictive control, alternating direction
method of multipliers (ADMM), mechanism design, secure multi-party compu-
tation, and zero-knowledge proofs. A high-level and conceptual rendering of the
interrelationship between these techniques can be found in Figure 1.

Blockchains A blockchain is a distributed ledger that stores a growing list of
unmodifiable records called blocks that are linked to previous blocks. Blockchains
can be used to make online secure transactions, authenticated by the collabo-
ration of the P2P nodes allowing participants to verify and audit transactions.
Blockchains can be classified according to their openness. Open, permissionless
networks don’t have access controls and reach decentralised consensus through
costly Proof-of-Work calculations over the most recently appended data by min-
ers. Permissioned blockchains have identity systems to limit participation and
do not rely on Proofs-of-Work. Blockchain-based smart contracts are computer
programs executed by the nodes and implementing self-enforced contracts. They
are usually executed by all or many nodes (on-chain smart contracts), thus their
code must be designed to minimise execution costs. Lately, off-chain smart con-
tracts frameworks are being developed that allow the execution of more complex
computational processes.

Model Predictive Control Advanced method of process control including
constraint satisfaction: a dynamical model of a system is used to predict the
future evolution of state trajectories while bounding the input to an admissible
set of values determined by a set of constraints, in order to optimise the control
signal and account for possible violation of the state trajectories; at every time
step, the optimal sequence over N steps in determined but only the first element
is implemented. Model Predictive Control is widely used in industrial settings,
and its large literature contains proofs of feasibility, stability, convergence, ro-
bustness and many other useful properties that could be reused in many other
settings.
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In this paper, multiple dynamic systems for Model Predictive Control will
be introduced: Economic Model for an Algorithmic Stablecoin and Economic
Model for a Collaterised Stablecoin; Economic Model for a Central-Banked
Currency; Decentralised Prediction of Currency Prices through Deep Learning;
Decentralised Stabilisation of Stablecoins; and Auction Mechanism for Issuing
Stablecoins.

Alternating Direction Method of Multipliers (ADMM) Class of al-
gorithms to solve distributed convex optimisation problems by breaking them
into smaller pieces, and distributing between multiple parties[BPC+11]. Itself a
variant of the augmented Lagrangian methods that use partial updates for the
dual variable, it requires exchanges of information between neighbors for every
iteration until converging to the result.

In this paper, multiple optimisation problems expressed in Model Predictive
Control will be decomposed with ADMM techniques in order to decentralise
their computation between multiple parties: Decentralised Prediction of Cur-
rency Prices through Deep Learning; Decentralised Stabilisation of Stablecoins;
and Decentralised Implementation of Auction Mechanism.

Mechanism Design Also called “reverse game theory”, is a field of game
theory and economics in which a “game designer” chooses the game structure
where players act rationally and engineers incentives or economic mechanisms,
toward desired objectives pursuing a predetermined game’s outcome.

In this paper, parties truthfully report private information 5 (strategy-proofness)
and faithfully execute a protocol (definition 10, theorem 12, theorem 2).

Secure Multi-Party Computation Protocols for secure multi-party com-
putation (MPC) enable multiple parties to jointly compute a function over in-
puts without disclosing said inputs (i.e., secure distributed computation). MPC
protocols usually aim to at least satisfy the conditions of inputs privacy (i.e.,
the only information that can be inferred about private inputs is whatever can
be inferred from the output of the function alone) and correctness (adversarial
parties should not be able to force honest parties to output an incorrect result).
Multiple security models are available: semi-honest, where corrupted parties are
passive adversaries that do not deviate from the protocol; covert, where adver-
saries may deviate arbitrarily from the protocol specification in an attempt to
cheat, but do not wish to be “caught” doing so ; and malicious security, where
corrupted parties may arbitrarily deviate from the protocol.

We utilise the framework SPDZ[DPSZ11], a multi-party protocol with ma-
licious security.

Zero-Knowledge Proofs Zero-knowledge proofs are proofs that prove that a
certain statement is true and nothing else, without revealing the prover’s secret
for this statement. Additionally, zero-knowledge proofs of knowledge also prove
that the prover indeed knows the secret.
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In this paper, zero-knowledge proofs are used to prove that a local compu-
tation was executed correctly.

Figure 1: High-level rendering of the combination of techniques

4 Economic Models
We formalise a basic model of a cryptocurrency1 issuing variable block rewards
and periodically auctioning a variable amount of unissued coins from its un-
capped and dynamically adjusted supply: all these three variables are constantly
adjusted by a dynamical system using Stochastic Model Predictive Control in
order to maintain price stability (i.e., controlled variables).

Let t ∈ T = {1, . . . , T} denote the time slots used by the blockchain. Let
Smax(t) denote the maximum supply of a cryptocurrency, Soutstanding(t) the
supply that is visible on-chain, Sinitial the initially issued supply by an initial
offering event (i.e., an initial auction) and Sunissued(t) is the amount of cryp-
tocurrency yet to be issued. Then, we have:

0 ≤ Sinitial ≤ Soutstanding(t) ≤ Smax(t),∀t ∈ T, (4.1)
Sinitial = Soutstanding(1), (4.2)
Smax(t) = Sunissued(t) + Soutstanding(t). (4.3)

1DISCLAIMER: the simplified models in the present paper are only for illustrative pur-
poses. Complex and parameterised models are needed for real-world settings.
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Periodically, miners are being rewarded for successfully processing blocks with
a variable amount of block rewards, BR(t):

Soutstanding(t+ 1) = Soutstanding(t) +BR(t),∀t ∈ T, (4.4)
Sunissued(t+ 1) = Sunissued(t)−BR(t), (4.5)

0 ≤ BR(t) ≤ BRmax. (4.6)

Auctions are carried out to issue coins from the pool of Sunissued(t) , each
auction releasing a variable amount of auctioned coins, AUCcoins(t), with xi(t)
denoting the amount of coins demanded by participant i, ∀t ∈ T :

Soutstanding(t+ 1) = Soutstanding(t) +AUCcoins(t), (4.7)
Sunissued(t+ 1) = Sunissued(t)−AUCcoins(t), (4.8)

0 ≤ AUCcoins(t) ≤ AUCmax, (4.9)
xmini (t) ≤ xi (t) ≤ xmaxi (t) , (4.10)∑

i

xi(t) −AUCcoins(t) = 0. (4.11)

Let P (t) denote the market price of a coin at time t in a currency (i.e., the
number of cryptocurrency coins that one unit of currency -EUR, JPY, USD-
will buy at time t) and we adopt a geometric Brownian motion model:

∆P (t) = P (t+ 1)− P (t), (4.12)
dP (t) = µP (t)dt+ σP (t)dWt, (4.13)

where Wt is a Weiner process. Let {Smax(t), BR(t), AUCcoins(t)} be the con-
trolled variables. Thus, in order to maintain price stability, these controlled
variables will expand when the price is increasing and contract when the price
is lowering:

Smax(t) ∼ Smax(t− 1) · P (t)

P (t− 1)
, (4.14)

BR(t) ∼ BR(t− 1) · P (t)

P (t− 1)
, (4.15)

AUCcoins(t) ∼ AUCcoins(t− 1) · P (t)

P (t− 1)
. (4.16)

4.1 Economic Model for an Algorithmic Stablecoin
Consider the stochastic linear state space system in the form

xk+1 = Axk +Buk + wk (4.17)
yk = Cyxk + vk (4.18)
zk = Czxk (4.19)
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where A,B,Cy, Cz are state space matrices, xk ∈ Rnx is the state vector, uk ∈
Rnu is the input vector, yk ∈ Rny is the output vector, zk ∈ Rnz is the vector of
controlled variables, wk ∈ Rnx is the noise vector of the process, and vk ∈ Rny

is the vector of measurement noise. Let N be the length of the prediction and
receding horizon control and define the vectors

Ni = {0 + i, 1 + i, . . . , N − 1 + i}

u =
[
uT0 uT1 . . . uTN−1

]T
, x =

[
xT1 xT2 . . . xTN

]T
,

z =
[
zT1 zT2 . . . zTN

]T
, w =

[
wT1 wT2 . . . wTN

]T
Define the following exchange rate function measuring the cumulative exchange
rate between the price of a currency (e.g., EUR, JPY, USD) and a stablecoin
in the stochastic state space system 4.17 in the following N time steps,

ψxch (u; x̄0, w) = {φ (u, x, z) |x0 = x̄0,
xk+1 = Axk +Buk + wk, zk+1 = Cxk+1, k ∈ N0} ,

(4.20)

Let P (t) be the spot price of the stablecoin cryptocurrency denominated in a
currency (e.g., EUR, JPY, USD). Then, the cumulative exchange rate at time
t is

φ (u, x, z) =

N∑
t=1

(P (t+ 1)) (4.21)

Following a criterion of social welfare maximisation, users and holders of the sta-
blecoin prefer to minimise the volatility of the exchange rate, with the following
equation describing the minimisation problem

minimise
∀t

λE [ψxch] + (1− λ)Var [ψxch] (4.22)

with λ ∈ [0, 1] determines the trade-off between the expected exchange rate and
the exchange rate variance.

4.2 Economic Model for a Collaterised Stablecoin
We extend the basic model of a cryptocurrency (4), with a reserve R (t) backing
every issued coin with λ units of the reserve asset: for example, λ = 1 for a 1 to 1
peg against a currency (e.g., EUR, JPY, USD), and λ > 1 for an overcollaterised
stablecoin backed with other cryptocurrencies. Then, we have:

R (t) = λ · Soutstanding (t) , (4.23)
0 ≤ R (t) ≤ λ · Smax (t) , (4.24)

In order to maintain price stability, λ (t) could also be a controlled variable that
will increase when the price is lowering and contract when the price is increasing:

λ (t) ∼ λ(t− 1) · P (t− 1)

P (t)
, (4.25)

1 ≤ λ (t) ≤ λmax. (4.26)
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4.3 Economic Model for a Central-Banked Currency
The framework and results of this paper could also be applied to the mone-
tary policy conducted by central banks, just by representing their models in
the framework of Model Predictive Control in a way similar to the previous
Economic Model for an Algorithmic Stablecoin.

The Taylor rule[Tay93] is an approximation of the responsiveness of the
nominal short-term interest rate it as applied by the central bank to changes in
inflation π and output y, according to the following formula

it = ϕy (yt − y∗) + ϕπ (πt − π∗) + π∗ + r∗ (4.27)

where a standard model describes the evolution of the economy

πt+1 = πt + αyt + eπt+1, (4.28)
yt+1 = ρyt − ζ (it − πt) + eyt+1, (4.29)

describing the dynamic relationship between the manipulated input it and the
two controlled outputs yt and πt. At equilibrium, we obtain it = i∗, πt = π∗,
yt = 0 and r∗ = i∗ − π∗. Equations 4.28 and 4.29 can be rewritten in the terms
of deviation variables from the equilibrium point, as

xt+1 = Axt +But + εt+1, (4.30)

where

x =

[
y −y∗
π −π∗

]
, u = ∆i = i− i∗, ε =

[
ey

eπ

]
, (4.31)

A =

[
ρ ζ
α 1

]
, (4.32)

B =

[
−ζ
0

]
(4.33)

The cost function of the central bank is of the standard optimal control form
α∑
k=0

βkL
(
x̂t+k|t , ut+k|t

)
(4.34)

where β ∈ (0, 1) is the discount factor, x̂t+k|t is the expected value of x at time
t+x using all information available at time t and model 4.30; ut+k|t is the input
value at time t+ k decided on at time t; and the M function is usually defined
as

M
(
x̂t+k|t , ut+k|t

)
= x̂Tt+k|tQx̂t+k|t +R2u2t+k|t (4.35)

with R2 ≥ 0 and Q � 0. The previous equations 4.34 and 4.35 can be reformu-
lated as an objective for Model Predictive Control as

min
u

{∑N−1
k=0 β

k
(
x̂Tt+k|tQx̂t+k|t +R2u2t+k|t + S2δu2t+k|t

)
+x̂Tt+N |t β

N Q̄x̂t+N |t + βNS2δu2t+N |t

} (4.36)
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where

Q =

[
1− λ 0

0 λ

]
� 0, 0 < λ < 1, (4.37)

u =
[
∆it|t . . .∆it+N−1|t

]T
, (4.38)

δut+k|t = ut+k|t − ut+k−1|t , k = 0, . . . , N (4.39)
ut+k|t ≥ −i∗, k = 0, . . . , N − 1, (4.40)
ut+k|t = ut+m−1|t , k = m, . . . , N − 1, (4.41)

x̂Tt+k|t =

k−1∑
l=0

AlBut+k−l−1|t +Akxt, k = 1, . . . , N (4.42)

with x̂t|t = xt and the values of 1 − λ and λ determine the trade-off between
the output gap and inflation.

The decentralised implementation of the previous Model Predictive Control
4.36 using the ADMM decomposition technique is left as an exercise to the
central banker.

4.3.1 Closed-Loop Stability

The following closed-loop structure is obtained from 4.27 and 4.30:

xt+1 = A
′
xt + εt+1, (4.43)

where
A

′
= A+BcT =

[
ρ− ζϕy ζ − ζϕπ

α 1

]
(4.44)

Theorem 1. The Model Predictive Controller for the Taylor rule 4.36-4.42 has
closed-loop stability, if and only if,

0.1ϕπ − 2.1 < ϕy (4.45)
ϕy < 0.06ϕπ + 8.5, (4.46)

ϕπ > 1. (4.47)

Proof. The characteristic equation for the matrix A
′
is:

f (µ) = µ2 − µ (αζ − ζϕy − αζϕπ + 1 + ρ) + (ρ− ζϕy) (4.48)

where µ is an eigenvalue of matrix A
′
. The closed-loop system is stable when

both eigenvalues of A
′
are inside the unit disk (Jury[Jur74] and Routh[Rou77]-

Hurtwiz[Hur95] stability criteria), if and only if,

2 + 2ρ− 2ζϕy + αζ (ϕπ − 1) > 0, (4.49)
1− ρ+ ζϕy − αζ (ϕπ − 1) > 0, (4.50)

αζ (ϕπ − 1) > 0. (4.51)
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Similar stability results can be derived for the Model Predictive Controllers
of the Economic Model for an Algorithmic Stablecoin and the Economic Model
for a Collaterised Stablecoin.

4.3.2 On Negative Interests

The Model Predictive Controller for the Taylor rule (4.36)-(4.42) includes a
constraint for the zero lower bound on the interest rate, equation (4.40):

ut+k|t ≥ −i∗, k = 0, . . . , N − 1.

In case the central bank wants to implement negative interest rates, said equa-
tion (4.40) must be removed. A possible implementation of negative interests
for a cryptocurrency starts by considering coinage epochs and then defining a
depreciation rate for every coinage epoch as time elapses. In the basic model of
a cryptocurrency (4), we could add the following equation:

Soutstanding (t) =

T∑
t=0

(Sminted (t)−DT (t)) , (4.52)

Sinitial = Sminted(1) = Soutstanding(1), (4.53)
0 ≤ Sinitial ≤ Soutstanding(t) ≤ Sminted (t) ≤ Smax(t),(4.54)

where Sminted (t) is the amount of minted coins at time t and DT (t) is the
depreciation of coins minted at time t evaluated at time T , for example,

DT (t) = min ((T − t) ·Drate · Sminted (t) , Sminted (t)) , (4.55)
Drate = 0.01, (4.56)

for a 1% depreciation rate for every coinage epoch since the first epoch.

5 Decentralised Prediction of Currency Prices through
Deep Learning

As noted in previous publications about predicting markets using Stochastic
Model Predictive Control techniques[PB17], this approach is only justifiable only
for consistent prediction of the direction of price changes (i.e., sign changes):
thus, it’s a requisite to use artificial intelligence techniques to predict price move-
ments in order to maintain price stability. Of course, price data can be shifted
by one sampling interval to the past, thereby making the economic models in-
dependent of any predictive power: however, the correct formulation is to use
any potential good estimate of step-ahead prices as this is the core of Stochastic
Model Predictive Control. Therefore, the exchange rate function 4.21 of the
models is formulated with one step-ahead prices (P (t+ 1)).

A neural network has L layers, each defined by a linear operator Wl and
a neural non-linear activation function hl. A layer computes and outputs the
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non-linear function:
al = hl (Wlal−1) (5.1)

on input activations al−1. By nesting the layers, composite functions are ob-
tained, for example,

f (a0,W ) = W4 (h3 (W3 (h2 (W2h1 (W1a0))))) (5.2)

where the collection of weight matrices isW = {Wl}. Training a neural network
for deep learning is the task of finding theW that matches the output activations
aL to targets y, given inputs a0: it’s equivalent to the following minimisation
problem, given loss function l,

minimise
W

l (f (a0;W ) , y) (5.3)

And this is equivalent to solving the following problem:

minimise
{Wl},{al},{zl}

l (zL, y) (5.4)

subject to zl = Wlal−1, for l = 1, 2, . . . , L, (5.5)
al = hl (zl) , for l = 1, 2, . . . , L− 1, (5.6)

where a new variable stores the output of layer l, zl = Wlal−1, and the output
of the link function is represented as a vector of activations al = hl (zl). By
following the penalty method, a ridge penalty function is added to obtain the
following unconstrained problem

minimise
{Wl},{al},{zl}

〈zL, λ〉+ l (zL, y) + βL ‖zL −WLaL−1‖2

+
∑L−1
l=1

[
βl ‖zl −Wlal−1‖2 + γl ‖al − hl (zl)‖2

] (5.7)

where {γl} and {βl} are constants controlling the weight of each constraint, and
〈zL, λ〉 is a Lagrange multiplier term. The advantage of the previous formulation
resides in that each sub-step has a simple closed-form solution with only one
variable, thus these sub-problems can be solved globally.

The update steps of each variable in the minimisation problem 5.7 are con-
sidered as follows:

• To obtain Wl, each layer minimises ‖zl −Wlal−1‖2: the solution of this
least square problem is

Wl ← zla
+
l+1 (5.8)

where a+l+1 is the pseudo-inverse of al+1.

• To obtain al, another least-squares problem must be solved. The solution
is

al ←
(
βl+1W

T
l+1Wl+1 + γlI

)−1 (
βl+1W

T
l+1zl+1 + γlhl (zl)

)
(5.9)
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• The update for zl requires minimising

arg minzγl ‖al − hl (z)‖
2

+ βl ‖zl −Wlal−1‖2

• Finally, the update of the Lagrange multiplier is given by

λ← λ+ βL (zL −WLaL−1) (5.10)

All the previous steps are listed in the next Algorithm 1:

do
for l = 1, 2, . . . , L− 1 do
Wl ← zla

+
l+1

al ←
(
βl+1W

T
l+1Wl+1 + γlI

)−1 (
βl+1W

T
l+1zl+1 + γlhl (zl)

)
zl ← arg minz

(
γl ‖al − hl (z)‖2 + βl ‖zl −Wlal−1‖2

)
end for
WL ← zLa

+
L−1

zl ← arg minz
(
l (z, y) + 〈zL, λ〉+ βL ‖z −WLal−1‖2

)
λ← λ+ βL (zL −WLaL−1)

until converged;
Algorithm 1: ADMM algorithm for Deep Learning

Finally, note that more advanced methods for training neural networks for
deep learning have appeared in the literature[XWZ+19, WYCZ19], also
considering their convergence.

6 Decentralised Stabilisation of Stablecoins
Following the Economic Model for an Algorithmic Stablecoin and its minimisa-
tion problem (4.22), the expectation of the exchange rate and the variance of
the exchange rate are traded off in a mean-variance Optimal Control Problem
with the following objective function

ψ = λEw [ψxch] + (1− λ)Varw [ψxch] (6.1)

with λ ∈ [0, 1] determining the trade-off between the expected exchange rate
and the exchange rate variance. Estimates of prices for the expected exchange
rate, Ew [ψxch], and the variance, Varw [ψxch], are introduced as follows

Ew [ψxch] ≈ µ =
1

S

∑
i∈S

ψxch
(
u; x̂0, w

i
)

(6.2)

Varw [ψxch] ≈ s2 =
1

S − 1

∑
i∈S

(
ψxch

(
u; x̂0, w

i
)
− µ

)2 (6.3)
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where wi is sampled from the distribution w and S is the set of scenarios: when
the number of scenarios is large, then

ψ ≈ ψ̃ = λµ+ (1− λ) s2 (6.4)

The open-loop input trajectory is defined as the trajectory, u∗ ∈ U , that
minimises (6.4), with U being some input constraint set. For the stochastic
linear system (4.17), u∗ can be expressed as the solution to the following Optimal
Control Problem,

minimise
{uj∈U,xj ,zj ,ψj}Sj=1,µ

λµ+ λ̃
∑
j∈S

(
ψj − µ

)2 (6.5)

subject to
(
xi, ui, zi

)
∈ H

(
x̂0, w

i
)
, i ∈ S, (6.6)

ψi ≥ φ
(
ui, xi, zi

)
, i ∈ S, (6.7)

µ = 1
S

∑
j∈S ψ

j , (6.8)

uik = ujk, i, j ∈ S, j ∈M (6.9)

where λ̃ =
1− λ
S − 1

,

M = {0, 1, . . . ,M} ,
M ≤ N,
H (x̂0, w) = {(x, z, u) |x0 = x̂0,

xk+1 = Axk +Buk + wk,

zk+1 = Czxk+1, k ∈ N0}
The previous Optimal Control Problem (6.5) is a convex optimisation problem
when U is a convex set and φ is a convex function: an ADMM-based decompo-
sition algorithm for (6.5) is presented below.

6.1 ADMM Decomposition
The Optimal Control Problem (6.5) is re-written as

minimise
u∈Ũ,x,z,ψ,µ

λµ+ λ̃ψTψ + Sλ̃µ2 − 2λ̃µ1Tψ, (6.10)

subject to Ãx+ B̃u+ w̃ = 0, (6.11)
z = C̃x, (6.12)

ψ ≥ φ̃ (u, x, z) , (6.13)
µ = 1Tψ/S, (6.14)
L̃u = 0, (6.15)

where

u =


u1

u2

...
uS

 , x =


x1

x2

...
xS

 , z =


z1

z2

...
zS

 , ψ =


ψ1

ψ2

...
ψS

 ,
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1 =
[

1 1 . . . 1
]
,

Ã = blkdiag
(
Ā, Ā, . . . , Ā

)
, B̃ = blkdiag

(
B̄, B̄, . . . , B̄

)
, C̃ = blkdiag

(
C̄, C̄, . . . , C̄

)
,

B̄ = blkdiag (B,B, . . . , B) , C̄ = blkdiag (C,C, . . . , C) ,

Ā =


−I
A −I

. . . . . .
A −I

 , w̄i =


wi0
wi1
...

wiN−1

+


Ax0

0
...
0

 , i ∈ S,

w̃ =
[(
w̄1
)T (

w̄2
)T
. . .
(
w̄S
)T ]T

,

φ̃ (u, x, z) =
[
φ
(
u1, x1, z2

)
. . . φ

(
uS , xS , zS

)]T
,

L̃ =


L −L

L −L
. . . . . .

L −L

 ,
L =

[
I 0

]
,

Lui =
[(
ui1
)T (

ui2
)T
. . .
(
uiM
)T ]T

The previous Optimal Control Problem (6.10) is then transformed into ADMM
form,

minimise
y1,y2

f1 (y1) + f2 (y2) , (6.16)

subject to M1y1 +M2y2 = 0, (6.17)

with the optimisation variables defined as

y1 =
[
ǔT xT zT ψ̌T µ̌

]T
, (6.18)

y2 =
[
uT ψT µT

]T (6.19)

where

g =
[

0 0 0 0 λ
]T
, H =

 0 0 0

0 λ̃I −λ̃1T
0 −λ̃1 Sλ̃

 , (6.20)

M1 =


0 0 0 0 1
0 0 0 0 1
I 0 0 0 0
0 0 0 I 0

 , M2 =


0 −1T

S 0
0 0 −1
−I 0 0
0 −I 0

 , (6.21)
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f1 (y1) = gT y1 + IY1 (y1) , (6.22)
f2 (y2) = yT2 Hy2 + IY2 (y2) , (6.23)

Y1 =
{
y1 | Ãx+ B̃ǔ+ w̃ = 0, z = C̃x, ψ̌ ≥ φ̃ (ǔ, x, z)

}
, (6.24)

Y2 =
{
y2 | L̃u = 0

}
(6.25)

6.2 Decentralised Iterated Computation
The Lagrangian of (6.16) and (6.17) is

L (y1, y2, ζ) = f1 (y1) + f2 (y2) + ζT (M1y1 +M2y2) (6.26)

where ζ is a vector of Lagrangian multipliers for (6.17). In ADMM, points
satisfying the optimality conditions for (6.16) and (6.17) are obtained via the
recursions with iteration number j

y1 (j + 1) = arg min
y1

Lρ (y1, y2 (j) , ζ (j))

= arg min
y1

f1 (y1) + ρ
2 ‖M1y1 +M2y2 (j) + η (j)‖22

(6.27)

y2 (j + 1) = arg min
y2

Lρ (y1 (j + 1) , y2, ζ (j))

= arg min
y2

f2 (y2) + ρ
2 ‖M1y1 (j + 1) +M2y2 + η (j)‖22 ,

(6.28)

η (j + 1) = η (j) + (M1y1 (j + 1) +M2y2 (j + 1)) (6.29)

where the augmented Lagrangian with penalty parameter ρ > 0 is defined as

Lρ (y1, y2, ζ) = L (y1, y2, ζ) +
ρ

2
‖M1y1 +M2y2‖22

and η = ζ/ρ is a scaled dual variable.
Stopping criteria for the previous recursions (6.27), (6.28) and (6.29) is given

by

‖M1y1 (j) +M2y2 (j)‖2 ≤ εP , (6.30)
ρ
∥∥MT

1 M2 (y2 (j + 1)− y2 (j))
∥∥
2
≤ εD, (6.31)

indicating that the algorithm should be stopped when the optimality conditions
for (6.16) and (6.17) are satisfied with accuracy as defined by the small tolerance
levels εP and εD.

The following Algorithm 2 describes the steps of the implementation of the
ADMM recursions (6.27)-(6.29): further optimisations are possible to parallelise
the algorithm in S.
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while not converged do
// ADMM update of y1 =

(
ǔT , xT , zT , ψ̌T , µ̌

)(
ǔT , xT , zT , ψ̌T , µ̌

)
←compute via 6.27

// ADMM update of y2 =
(
uT , ψT , µT

)(
uT ψT µT

)
←compute via 6.28

// ADMM update of η
η ←compute via 6.29

end while
Algorithm 2: ADMM algorithm for the Optimal Control Problem 6.5-6.9

Theorem 2. The proposed decentralised mechanism in Algorithm 2 is a faithful
decentralised implementation.

Proof. The steps that every rational user i will faithfully complete are the vari-
able update steps of (6.27)-(6.29) in Algorithm 2.

Under the assumption of rational players in an ex-post Nash equilibrium
(11), users can maximise their own utility only by maximising the social welfare
(theorem 5). Therefore, every user will faithfully execute the variable update
steps of (6.27)-(6.29) since it’s the only way to maximise social welfare when all
the other rational users are following the intended strategy.

7 Auction Mechanism for Issuing Stablecoins
At the beginning of an auction, each user reports its demand to the auction
manager. We define the demand of user i as

θi =
{
xmini (t) , xi (t) , xmaxi (t)

}
(7.1)

Users can misreport their demands: let θ̂i =
{
x̂mini (t) , x̂i (t) , x̂maxi (t)

}
denote

the reported demand of user i. The auction manager determines the outcome
of the auction including stablecoin allocation and payments according to the
stablecoin allocation rule, al ().

Denote the following variable definitions

xi = [xi,1, . . . , xi,T ] , y = [y1, . . . , yT ] ,

vi (xi) =
∑
t∈T vi,t (xi,t) , c (y) =

∑
t∈T

ct (yt) .

where vi,t (xi,t) is a concave function for the valuation of user i at time t and
ct (yt) is an always-positive convex function for the cost of the auction manager
at time t (i.e., this cost is the market value of the auctioned coins, plus other
expenditures for carrying out the auction). The utility of user i is defined as
the valuation minus the payment

ui

(
al
(
θ̂
)
, θi

)
=
∑
t∈T

vi,t (xi, t)−
∑
t∈T

pi,t

(
θ̂
)
, (7.2)
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and the utility of the auction manager is the total payment minus the total cost,∑
i∈N

∑
i∈T

pi,t

(
θ̂
)
−
∑
t∈T

ct (yt) (7.3)

The stablecoin allocation rule of the auction mechanism is defined by the
following social welfare maximisation problem

S : maximise
x,y

∑
i∈N vi (xi)− c (y) , (7.4)

such that xi ∈ Xi, ∀i ∈ N, (7.5)
y ∈ Y, (7.6)∑

i∈N Aixi +By = 0, (7.7)

where Xi is the constraint set of user i for satisfying (4.10) ∀t ∈ T ; Y is the
constraint set of the blockchain satisfying (4.1)-(4.9) and (4.12)-(4.16) ∀t ∈ T ;
Ai and Bi are the constraint set for satisfying (4.11) ∀t ∈ T equivalent to
constraint (7.7).

The optimal solution to the social welfare maximisation problem S is de-
noted by {x∗, y∗}, in which x∗ is the outcome of stablecoin allocation to users
whenever all users truthfully report their demands to the auction mechanism.

The payment by user i at time slot t is defined as the following equation
according to the VCG payment rule[NR07, PS04],

pi,t (θ) =
∑
j 6=i

vj,t
(
x−ij,t
)
−
∑
j 6=i

vj,t
(
x∗j,t
)

+ ct (y∗t ) , (7.8)

where x−i =
{
x−ij,t |j ∈ N \ {i} , t ∈ T

}
: at the same time, the payment by user

i at time slot t is the optimal solution to the following maximisation problem
that excludes user i,

S−i : maximise
x

∑
j 6=i vj (xj) , (7.9)

such that xj ∈ Xj , ∀j ∈ N \ {i} (7.10)

7.1 Properties of the Auction Mechanism
In the proposed auction mechanism, each user achieves maximum utility only
when said user truthfully reports its demand θi: a mechanism is incentive-
compatible if truth-revelation by users is obtained in an equilibrium[NR07,
PS04].

Let si (θi) denote the strategy of user i given θi and let

θ−i = {θ1, . . . , θi−1, θi+1, . . . , θN}

Definition 3. (Dominant-Strategy Equilibrium[SPS03]). A strategy profile s∗
is a dominant-strategy equilibrium of a game if, for all i,

ui (f (s∗i (θi) , s−i (θ−i)) , θi) ≥ ui (f (si (θi) , s−i (θ−i)) , θi) (7.11)

holds si (θi) ∈ Θi, ∀θi, ∀θ−i and ∀si 6= s∗i .
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Definition 4. (Strategy-Proof Mechanism[SPS03]). A mechanism is strategy-
proof if truthfully reporting demand θi is the best strategy of user i, no matter
what the other users report: that is, the incentive-compatibility of a mechanism
in a dominant-strategy equilibrium is only achieved when the following condition
holds

ui

(
f
(
θi, θ̂−i

)
, θi

)
≥ ui

(
f
(
θ̂i, θ̂−i

)
, θi

)
(7.12)

The proposed auction mechanism is incentive-compatible and strategy-proof
in a dominant-strategy equilibrium.

Theorem 5. The proposed auction mechanism (7.4)-(7.7) and (7.8) is strategy-
proof.

Proof. We prove that each user will truthfully report their demand in order to
show that the auction mechanism is strategy-proof.

For their demanded amount xi(t), the payment rule (7.8) was designed ac-
cording to the VCG payment rule[NR07, PS04] so that user’s utility is max-
imised only when it truthfully reports its demand.

For the lower bound xmini (t), user i will not understate xmini (t) to ensure
that the minimum demanded is satisfied. A user will not overstate xmini (t) to
avoid limiting the growth of the social welfare: to understand the underlying
reason, we write the utility of the user with the payment rule expanded

ui

(
al
(
θ̂
)
, θi

)
= vi (x∗i )−

∑
j 6=i

vj
(
x−ij
)

+
∑
j 6=i

vj
(
x∗j
)
− c (y∗) ,

and note that a user cannot influence the second term by misreporting their
demand θ̂. A user maximising utility can only maximise the other terms (i.e.,
social welfare). Therefore, user i will not overstate xmini (t).

For the upper bound xmaxi (t), for similar reasons to the previous xmini (t),
understating xmaxi (t) would only limit the growth of the social welfare, thus
user i is not incentivised to understate xmaxi (t). On the other side, overstating
xmaxi (t) would lead to a larger stablecoin allocation than the real user’s demand:
the auction manager would detect such a situation when later the user is unable
to pay the overstated allocation, and penalises the user with much higher prices
for a much lower amount of coins. Thus, user i will not overstate xmaxi (t) in
order to prevent penalties.

Theorem 6. The proposed auction is budget-balanced, that is, the received pay-
ment is no less than the total cost.

Proof. The total payment that the auction manager receives is∑
i∈N

∑
i∈T

pi,t (θ) =
∑
i∈N

∑
j 6=i

vj
(
x−ij
)
−
∑
i∈N

∑
j 6=i

vj
(
x∗j
)

+N · c (y∗)
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Note that ∑
j 6=i

vj
(
x−ij
)
≥
∑
j 6=i

vj
(
x∗j
)

because x−i is the optimal solution to (7.9) and that, by definition, c (y∗) ≥ 0.
Therefore, we conclude∑

i∈N

∑
i∈T

pi,t (θ) ≥ N · c (y∗) ≥ c (y∗) .

8 Decentralised Implementation of Auction Mech-
anism

A decentralised implementation of the centralised auction mechanism (7.4) is
achieved in this section: proximal dual consensus ADMM[BPC+11, Cha14] is
used to solve problem S .

8.1 Dual Consensus ADMM
We start adding a polyhedra constraint to the stablecoin allocation rule (7.4)-
(7.7):

S : maximise
x,y

∑
i∈N vi (xi)− c (y) , (8.1)

such that xi ∈ Xi, ∀i ∈ N, (8.2)
y ∈ Y, (8.3)∑

i∈N Aixi +By = 0, (8.4)
Cixi � di, i = 1, . . . , N, (8.5)

where each xi in (8.5) is a local constraint set of user i consisting of simple
polyhedra constraint Cixi � di, such that there would be closed-form solutions
to efficiently solve all the subproblems at every iteration.

Let λ be the dual variable of constraint (8.4), and zi be the dual variable of
(8.5): the Lagrange dual problem of S , equivalent to solving problem S since
it’s a concave maximisation problem, is defined by

minimise
λ,zi

∑
i∈N

φi (λ, zi) + zTi di + ψ (λ) , (8.6)

where

φi (λ, zi) = maximise
xi∈Xi

{
vi (xi)− λTAixi − zTi (Cixi + ri)

}
,∀i ∈ N, (8.7)

ψ (λ) = maximise
y∈Y

{
−c (y)− λTBy

}
(8.8)
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where ri are slack variables. Let’s obtain a copy of λ for every user i, denoted
by λi, by rewriting the previous problem into the following equivalent problem,

minimise
λ,zi,{λi},{λ′

i}
∑
i∈N φi (λi, zi) + zTi di + ψ (λ) (8.9)

such that λi = λ
′

i, ∀i ∈ N, (8.10)

λ = λ
′

i, (8.11)

In blockchain settings, there could be some users offline and/or some communi-
cation links could be interrupted: at each iteration, each user i has probability
αi ∈ (0, 1] of being online, and each link (i, j) has probability pe ∈ (0, 1] of being
interrupted; the probability that user i and user j are both active and able to
exchange messages is given by βij = αiαj (1− pe). For each iteration k, let Ωk

be the set of active users and Ψk ⊆
{

(i, j) |i, j ∈ Ωk
}
be the set of active edges.

The variable update steps of the auction manager at iteration k are given
by the following equations:

µ[k] = µ[k−1] + q
∑
i∈N

(
λ[k−1] − λ[k−1]i

)
, (8.12)

y[k] = arg min
y∈Y

{
c (y) + q

4N

∥∥∥ 1
qBy −

1
qµ

[k]

+
∑
i∈N

(
λ[k−1] + λ

[k−1]
i

)
‖22
}
,

(8.13)

λ[k] =
1

2N

(
1

q
By[k] − 1

q
µ[k] +

∑
i∈N

(
λ[k−1] + λ

[k−1]
i

))
(8.14)

with µ represents the dual variables λi = λ
′

i and q is a positive constant. The
variable update steps of user i at iteration k are given by the following equations:

∀i ∈ Ωk :

µ
[k]
i = µ

[k−1]
i + 2q

(
λ
[k−1]
i − t[k−1]ij

)
, (8.15)(

x
[k]
i , r

[k]
i

)
= arg min
xi∈Xi,ri�0

{
−vi (xi) + q

4

∥∥∥ 1
qAixi −

1
qµ

[k]
i

+2t
[k−1]
ij ‖22

+ 1
2σi

∥∥Cixi + ri − di + σiz
k−1
i

∥∥2
2

}
,

(8.16)

z
[k]
i = z

[k−1]
i +

1

σi

(
Cix

[k]
i + r

[k]
i − di

)
, (8.17)

t
[k]
ij =

{
λ
[k]
i +λ

[k]
j

2 , if (i, j) ∈ Ψk,

t
[k−1]
ij , otherwise,

(8.18)

λ
[k]
i =

1

2q
Aix

[k]
i −

1

2q
µ
[k]
i + t

[k−1]
ij , (8.19)

∀i /∈ Ωk :

x
[k]
i 6= x

[k−1]
i , r

[k]
i 6= r

[k−1]
i , λ

[k]
i 6= λ

[k−1]
i , z

[k]
i 6= z

[k−1]
i ,

µ
[k]
i 6= µ

[k−1]
i , t

[k]
ij 6= t

[k−1]
ij ∀j ∈ Ni,

(8.20)
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where σi are penalty parameters. The following stopping criteria for the success
of the convergence are applied by the auction manager∥∥∥λ[k] − λ̄[k]∥∥∥2

2
+
∑
i∈N

∥∥∥λ[k]i − λ̄[k]∥∥∥2
2
≤ ε1, (8.21)

∥∥∥λ̄[k] − λ̄[k−1]∥∥∥2
2
≤ ε2, (8.22)

where ε1 and ε2 are small positive constants and

λ̄[k] =

(
λ[k] +

∑
i∈N

λ
[k]
i

)
/ (N + 1)

The following Algorithm 3 shows the dual consensus ADMM for problem S :

k = 0
Auction manager only: µ[0] = 0, y[0] ∈ R15T , λ[0] ∈ R3T

User i only: µ[0]
i = 0, x[0]i ∈ R15T , r

[0]
i ∈ R15T , z

[0]
i ∈ R15T , λ

[0]
i ∈ R3T and

t
[0]
ij =

λ0i + λ0j
2

repeat
k ← k + 1
Auction manager only: send λ[k−1] to every user i
Auction manager only: update µ[k], y[k] and λ[k] according to

(8.12)-(8.14)
for parallel i ∈ N do
User i only: send λ[k−1]i to auction manager
User i only: update µ[k]

i , x
[k]
i , r[k]i , z[k]i , t[k]ij and λ[k]i according to

(8.15)-(8.20)
end for

until convergence is achieved by stopping criteria (8.21) and (8.22);
Algorithm 3: Dual Consensus ADMM for Problem S

Theorem 7. Algorithm 3 converges to the optimal solution of problem S in
the mean, with a O (1/k) worst-case convergence rate.

Proof. Follows from Theorem 2 from [Cha14].

Note that although this ADMM algorithm 3 is only resistant against random
failures αi of users and interruptions pe of the links, and not against poisoning
attacks that would corrupt inputs, it’s also possible to design ADMM algorithms
resistant against Byzantine attackers: however, it would also increase the num-
ber of iterations k, specially whenever under attack, thus the chosen trade-off
to ignore the Byzantine setting given the truthfulness of theorem 5 and faithful-
ness of theorem 12 properties of the Decentralised Implementation of Auction
Mechanism.
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8.2 Decentralised Mechanism
The decentralised mechanism features the following steps:

Protocol 1: Decentralised Mechanism of Auction

1. User i reports his demand θ̂i to the auction manager.

2. User i solves the following maximisation problem Si

x
′

i = maximise
xi∈Xi

vi (xi) (8.23)

and sends the result x
′

i to the auction manager: since problem Si only re-
quires local information, it can be solved without collaborating with other
users. The auction manager solves problems S−i, ∀i ∈ N , by calculating

x−i =
{
x

′

j |j ∈ N \ {i}
}

(8.24)

from the collected x
′

i, thus obtaining {S−1,S−2, . . . ,S−N}.

3. To obtain the solution to problem S , Algorithm 3 is executed: the auction
manager obtains results y∗ and λ∗, and every user i obtains x∗i and λ∗i ;
every user i sends x∗i to the auction manager.

4. The auction manager calculates payments according to (7.8) using the
received x∗and x−i, and obtains the stablecoin allocation x∗.

8.3 Properties of the Decentralised Mechanism
In the following, we prove that users will faithfully execute all the actions of the
Decentralised Mechanism without manipulating the outcome of the auction by
strategically modifying results.

Definition 8. (Decentralised Mechanism [PS04]). A decentralised mechanism
dM = (g,Σ, sm) defines an outcome rule g, a feasible strategy space Σ =
(Σ1 × . . .× ΣN ), and an intended strategy sm = (sm1 , . . . , s

m
N ).

Definition 9. (Intended Strategy [PS04]). A strategy sm is the intended strat-
egy of a decentralised strategy-proof direct-revelation mechanism Md that im-
plements outcome f (θ), when

f (θ) = g (sm (θ))

for all θ ∈ Θ.

Thus, an intended strategy sm is a strategy that every user is expected
to follow: in the Decentralised Mechanism, the intended strategies are all the
steps that users must faithfully execute to produce the same outcome as the
centralised auction mechanism.
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Definition 10. (Faithful Implementation). A decentralised mechanism dM =
(g,Σ, sm) is an (ex-post) faithful implementation of social-choice rule g (sm (θ))
when intended strategy sm is an ex-post Nash equilibrium.

That is, users will follow the intended strategy in a faithful implementation
of a decentralised mechanism if no unilateral deviation can increase their utility.

Definition 11. (Ex-Post Nash Equilibrium [PS04, SPS03]). A strategy profile
s∗ = (s∗1, . . . , s

∗
N ) is an ex-post Nash equilibrium when

ui
(
g
(
s∗i (θi) , s

∗
−i (θ−i)

)
; θi
)
≥ ui

(
g
(
s
′

i (θi) , s
∗
−i (θ−i)

)
; θi

)
for all agents, for all s

′

i 6= s∗i , for every demand θi and for all demands θ−i of
other agents.

In an ex-post Nash equilibrium, all the other users are assumed rational:
thus, user i will not deviate from s∗i when other users are following strategy s∗−i.

Theorem 12. The proposed Decentralised Mechanism is a faithful decentralised
implementation.

Proof. In the Decentralised Mechanism, the steps that every rational user i will
faithfully complete are the following:

1. Reporting θ̂i to the auction manager

2. Solving Si

3. Sending result x
′

i of the previous step

4. Updating variable update steps µ[k]
i , x

[k]
i , r[k]i , z[k]i , t[k]ij and λ

[k]
i of (8.15)-

(8.20)

5. Sending λ[k] of (8.19) to the auction manager

6. Sending resulting x∗i obtained from the last step of (8.16)

Users will truthfully execute step 1 due to the truthful-revelation property
in a dominant-strategy equilibrium of Theorem 5 that also implies truthful-
revelation in an ex-post Nash equilibrium.
Further, the calculation of Si is done locally without any input from other users
(i.e., the input from Byzantine attackers is never considered) and the auction
manager will only take a result x

′

i from each identified user using a secure
channel. Moreover, the computation of Si does not solve problems S−i and it
cannot modify the term

∑
j 6=i vj

(
x−ij
)
in the payment rule (7.8) (i.e., the user

cannot lower its payment). Thus, a rational user will faithfully execute steps 2
and 3.
Finally, users can maximise their own utility only by maximising the social
welfare, according to Theorem 5. Therefore, every user will faithfully execute
actions 4-6, since it’s the only way to maximise social welfare when all the other
rational users are following the intended strategy.
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9 Encrypting ADMM
Previous works on encrypting ADMM or Model Predictive Control are very
scarce: there are some works about encrypting models from control theory or
model predictive control but only for cloud settings[DRS+18, AMP18, Aa17,
AGS+18, AMP19], thus non-decentralised; another paper encrypts ADMMmod-
els, but using differential privacy[WID+19]; yet another paper encrypts ADMM
models, but in the semi-honest setting[ZAW18]; only Helen[ZPGS19] encrypts
ADMM in the malicious setting, thus it will be our chosen framework .

Helen[ZPGS19] solves a coopetive machine learning between multiple parties
in a malicious setting. Like other works where multiple parties collaborate with
their own data using secure multiparty computation[AGP15], they can’t handle
settings where the parties lie about their inputs (i.e., poisoning attacks). One
could argue that privacy only makes lying worse: that is, privacy without truth-
fulness and faithfulness is troublesome (Proverbs 12:22, [Sol30]). Fortunately,
the present paper solves all these issues by leaning on our previous theorems
about truthfulness of theorem 5 and faithfulness of theorem 12 for the Decen-
tralised Implementation of Auction Mechanism.

9.1 Cryptographic Gadgets
We utilise the SPDZ framework[DPSZ11]: an input a ∈ Fpk is represented as

〈a〉 = (δ, (a1, . . . , an) , (γ (a)1 , . . . , γ (a)n))

where δ is public, ai is a share of a and γ (a)i is the MAX share authenticating
a under a SPDZ global key α that is not revealed until the end of the protocol.
For an SPDZ execution to be considered as correct, the following properties
must hold

a =
∑
i ai, α (a+ δ) =

∑
i γ (a)i

From Helen[ZPGS19], we re-use the following gadgets:
A zero-knowledge proof for the statement: “Given public parameters: public
key PK, encryptions EX , EY and Ez; private parameters X,

• DecSK (EZ) = DecSK (EX) ·DecSK (EY ), and

• I know X such that DecSK (EX) = X”

Gadget 1. Plaintext-ciphertext matrix multiplication proof
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A zero-knowledge proof for the statement: “Given public parameters: public
key PK, encryptions EX , EY and Ez; private parameters X and Y,

• DecSK (EZ) = DecSK (EX) ·DecSK (EY ), and

• I know X,Y and Z such that DecSK (EX) = X, DecSK (EY ) = Y and
DecSK (EZ) = Z”

Gadget 2. Plaintext-plaintext matrix multiplication proof

For m parties, each party having the public key PK and a share of the secret
key SK, given public ciphertext EncPK (a), convert a into m shares ai ∈ Zp
such that

a ≡
∑

ai mod p

Each party Pi receives secret share ai and does not learn the original secret
value a.

Gadget 3. Converting ciphertexts into arithmethic MPC shares

Given public parameters: encrypted value EncPK (a), encrypted SPDZ input
shares EncPK (bi), encrypted SPDZ MACs EncPK (ci), and interval proofs of
plaintext knowledge, verify that:

1. a ≡
∑
i bi mod p, and

2. bi are valid SPDZ shares and ci’s are valid MACs on bi.

Gadget 4. MPC conversion verification

9.2 Initialisation Phase
During initialisation, the m parties compute using SPDZ the parameters for
threshold encryption[FPS00], generating a public key PK known to everyone.
Each party m receives a share of the corresponding secret key SKi: all the
parties must agree to decrypt a value encrypted with the shared PK.

9.3 Input Preparation Phase
In this phase, each party commits to their inputs by broadcasting their en-
crypted inputs to all the other parties: additionally, all the parties prove that
they know the encrypted values using zero-knowledge proofs of knowledge. Note
that encryptions also serve as a commitment scheme[Gro09].

To ensure that each party consistently uses the same inputs during the entire
protocol and to avoid deviations based on what other parties have contributed,
each party encrypts and broadcasts: EncPK

(
θ̂i

)
=
{
x̂mini (t) , x̂i (t) , x̂maxi (t)

}
,

EncPK
(
x

′

i

)
, EncPK (xi) and EncPK (y). These encryptions are accompanied

with proofs that the committed inputs are within a certain range[Bou00].
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9.4 Compute Phase
In this phase, the variable update steps of the ADMM are executed, in which
parties successively compute locally on encrypted data, followed by coordina-
tion steps with other parties using MPC computation. No party learns any
intermediate step beyond the final results, proving in zero-knowledge that the
local computations were performed correctly using the data committed during
the input preparation phase.

9.4.1 Initialisation and Pre-Computations

Initial variables are initialised to zero: µ[0], λ[0], µ
[0]
i , λ

[0]
i , r

[0]
i , z

[0]
i , t

[0]
ij .

Additionally, the auction manager solves problems S−i, obtaining x−i from
the collected x

′

i in the preparation phase.

9.4.2 Local Optimisation

Since Algorithm 3 is fully parallel and decentralised, note that the variable
update steps of auction manager (8.12)-(8.14), or the steps (8.15)-(8.20) of user
i, only require local information and iterative exchange of λ[k] and λ[k]i with its
neighbors.

Each party can independently calculate all the variable update steps by doing
plaintext scaling and plaintext-ciphertext matrix multiplication: each party also
needs to generate proofs proving that they have calculated the variable update
steps correctly, using Gadget 1 (9.1) and Gadget 2 (9.1).

9.4.3 Coordination

After the local optimisation step, each party exchanges λ[k] and λ
[k]
i with its

neighbors, and each party also publishes interval proofs of knowledge.
We may not need to use MPC: it’s only required if steps (8.13) or (8.16) are

implemented using non-linear functions, which itself depends on the concrete
functions c (y) and −vi (xi). In the best case, simple closed-form solutions with
only linear functions could be chosen.

But when MPC is needed, the encrypted variables need to be converted to
arithmetic SPDZ shares using Gadget 3 (9.1) and calculate the function using
SPDZ. After the MPC computation, each party receives shares of the variables
and its MAC shares: these shares are converted back into encrypted form by
encrypting the shares, publishing them, and summing up the encrypted shares.

After all the ADMM calculation, every user i sends x∗i to the auction man-
ager, which must calculate payments according to equation (7.8) to obtain the
stablecoin allocation x∗: these calculations may also require MPC conversion
and computation.
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9.5 Release Phase
The encrypted model obtained at the end of the previous phase is decrypted:
all parties must agree to decrypt the results and release the final data. Before
said release, parties must prove that they correctly executed the conversions
between ciphertext and MPC shares using Gadget 4 (9.1), in order to prevent
that different inputs from the committed ones were used.

After all the SPDZ value have been verified by Gadget 4 (9.1), the parties
aggregate the encrypted shares of the stablecoin allocation x∗ in to a single
ciphertext, and then run the joint decryption protocol[Bou00].

9.6 Analysis of Properties
Following the line of work merging secure computation and mechanism design[IML05],
that assumes that players are rational and not only honest or malicious, we reach
Guaranteed Output Delivery (G.O.D.) and fairness[CL14], circumventing their
classical impossibility results.

Definition 13. fCRS : ideal functionality to generate common reference strings
and secret inputs to the parties.

Definition 14. fSPDZ : ideal functionality computing ADMM using SPDZ.

Theorem 15. fDISTR−AUCTION−MECHANISM is in the (fCRS , fSPDZ)-hybrid
model under standard cryptographic assumptions, against a malicious adversary
who can statically corrupt up to m−1 out of m parties in an ex-post Nash equilib-
rium, reaching G.O.D. and fairness, thus circumventing the impossibility results
of fSPDZ .

Proof. Malicious security follows from Theorem 6 [ZPGS19].
The properties of truthfulness of theorem 5 and faithfulness of theorem 12

of the Decentralised Implementation of Auction Mechanism, imply that every ra-
tional party i will faithfully complete all the steps of fDISTR−AUCTION−MECHANISM

: in other words, it won’t be rational to cheat or abort the protocol for mali-
cious parties restricted to the rational behaviors of an ex-post Nash equilibrium.
Therefore, we reach G.O.D. and fairness, thus their impossibility results are cir-
cumvented.

10 Discussion
The history of control theory for stabilisation in economics goes back to the
1950s: for a recent survey, see [Nec08]. However, the “Prescott critique”[KP77,
Pre77] of the time-inconsistency of optimal control results precluded its real-
world applicability: fortunately, the problem of time inconsistency can be ad-
equately treated within the framework of Model Predictive Control[SCMP18].
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And even though it might seem that decentralising economic systems is a mod-
ern trend born from cryptocurrencies and blockchains, there are already pub-
lications about these topics starting from the 1970s: [Aok76, Myo76, Pin77,
Nec83, Nec87, Aok88, Nec13]. This paper subsumes all these previous works
because: 1) Model Predictive Control provides a more expressive language to
define economic policies; 2) the decentralisation provided by the ADMM de-
composition allows for more than the 2-3 parties previously considered) the
mechanism design techniques used in this paper guarantee more robust results.

Economists have recently created multiple models showing the benefits of
Centrally-Banked Digital Currencies (CBDC): said results also apply to a CBDC
implemented in the technical framework of a fully decentralised cryptocurrency,
as in the present paper. For example:

• Monetary transmission would strengthen[MDBC18].

• A practical costless medium of exchange, and facilitate the systematic and
transparent conduct of monetary policy[BL17].

• Permanently raise GDP by as much as 3%, due to reductions in real
interest rates, distortionary taxes, and monetary transaction costs; and
improve the ability to stabilise the business cycle[BK16].

• Increases financial inclusion, diminishes the demand for cash, and expands
the depositor base of private banks[And18].

• Address competition problems in the banking sector[KRW18].

Common objections to the genuineness of decentralisation in stablecoins are
traversed here:

1. Need for centralised holding of funds: not by using other cryptocurrencies
as collateral.

2. Auditors are required for verification: not by using zero-knowledge proofs
and other mathematical guarantees.

3. Centralised price feeds: multiple verified agents could post the real-time
prices on the blockchain, or use an authenticated data feed for smart
contracts[ZCC+16]. The issue of adversarial attacks to neural networks is
not relevant here because all price feeds are supposed trustworthy.

Finally, consensus-ADMM as described in this paper offers many advantages
over smart contracts running on replicated state machines (e.g., Ethereum):

1. Data intensive tasks such as deep-learning (5) are nearly impossible to
execute due to gas limits and storage costs.

2. Not all mining nodes would need to participate on the currency stabilisa-
tion process: this special role could be reserved to a trustworthy subset of
nodes.

3. The lack of privacy in public permissionless blockchains renders algorithms
such as the decentralised auction (8) unfeasible to run.
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11 Conclusion
The present paper has tackled and successfully solved the problem of designing
a decentralised stablecoin with price stability guarantees inherited from control
theory (i.e., Closed-Loop Stability) and model predictive control (i.e., conver-
gence of theorem 7). Further guarantees required in a decentralised setting come
from mechanism design: truthfulness (definition 4, theorem 5) and faithfulness
(definition 10, theorem 12, theorem 2). Additional security against malicious
parties of theorem 15 is obtained from the combination of secure multi-party
computation and zero-knowledge proofs.

The flexibility of this framework including model predictive control, which
can accommodate a great variety of economic policies, combined with the pow-
erful predictive capabilities of artificial intelligence techniques (e.g., neural net-
works and deep learning) foretell a whole range of possibilities that will lead to
better cryptocurrencies and blockchains.
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