[1]

[2]

[3]

[4]

[5]

Description
Title of Invention: SECURE COMPUTATION ON

SPREADSHEETS
Technical Field

Embodiments relate to spreadsheet calculation processing. More particularly, this
disclosure is related to a user programmable secure spreadsheet system and a
computer-readable medium and a computer implemented method configured to carry
out secure multiparty computations.

Background

The first computer spreadsheet program was introduced in 1979, allowing users to
perform complex computations using an expressive but very easy to learn formula
language in comparison to computer programming languages: for that reason, they
remain the preferred calculation tool for non-computer scientists. Collaboration-
enabled spreadsheets, allowing multiple users to collaborate simultaneously on a single
spreadsheet document, show a latent need for collaborative calculation over data that is
currently limited by the required free sharing of data, opening the possibility of loss
and theft of very valuable information: to solve these problems, a secure spreadsheet
that preserves and enhances the privacy and ownership of data is disclosed.

Multiple variations and models of secure multi-party protocols have been published
in the cryptographic literature: security assumptions (computational vs unconditional),
adversarial models (active vs passive, static vs adaptative), underlying cryptographic
primitives (garbled circuits, oblivious transfers, secret sharing, homomorphic en-
cryption, oblivious random access machines), communication models (secure
channels, broadcast), and delegatable execution (outsourcing to the cloud, trusted
hardware). It would be of great utility to abstract away all these models of secure com-
putation, so that the user is able to configure different security parameters and security
scenarios without impacting the support for secure computation of the formulas taken
from spreadsheet software packages; more specifically, users should be able to
outsource the computation to one or multiple cloud systems instead of using their own
computers, with the aim of speeding up secure computations.

It is therefore an object of the present disclosure to provide various models of
security computation under the graphical interface of the spreadsheet paradigm,

allowing an easy, fast and convenient to securely calculate for the non-cryptographer.
Disclosure of Invention

Summary

The object is solved by a user programmable secure spreadsheet calculation system, a

[6]

[7]

[8]

[9]

[10]

computer-readable medium and a computer implemented method of secure spreadsheet
calculation according to the present claims.

The basic idea of the present disclosure is to provide a user programmable secure
spreadsheet calculation system in which a parser module interprets values, variables
and formulas obtained from a spreadsheet module, to generate a secure program using
a secure computation protocol that when executed by a secure cryptographic cal-
culation module, an encrypted result is computed so that users of the secure
spreadsheet system learn nothing from the data of other users except the result of the
calculation. The secure parser module and the secure cryptographic calculation module
include various disclosed optimizations that are essential to provide fast executions of
secure calculations, satisfying user's expectations based on the quick calculations
carried out by spreadsheets in a non-secure way. In fact, spreadsheets reveal as a
perfect field in which to apply secure computation techniques for the reason that cal-
culations usually done by spreadsheets lack loops and recursion, these being more
amenable to secure computation. This basic idea can be further extended to the benefit
of users: to speed-up the secure calculations, the spreadsheet and the secure parser
module could be present in a local computer and the secure cryptographic calculation
module in a cloud computing system; and data could be taken from a publicly-ac-
cessible directory of third-party encrypted values, variables and formulas, which could
be used for secure calculation after their purchase.

In the interest of clarity, several terms which follow are specifically defined for use
herein. The term 'secure program' is used herein to refer to any program that comprises
executable code and encrypted information, equivalent to at least some values, at least
some variables and at least some formulas included within spreadsheet files.

The term 'spreadsheet file' is used herein to refer to refer to any electronic document
in which user data is arranged in the rows and columns of a grid and can be ma-
nipulated and used in calculations. Spreadsheet files can be in solid-state memory
(RAM), on computer storage medium or on a network-accessible storage device.

The term 'user data’ is used herein to refer to any information contained within
spreadsheet files, comprising: values, cell references, variables, functions and
formulas.

The term 'secure computation protocol' is used herein to refer to any cryptographic
protocol that allows computation on encrypted data, based on any privacy-preserving
protocol or technique, comprising: garbled circuits and oblivious transfers; and secret
sharing; and homomorphic encryption; and oblivious random access machines
(ORAM); and combinations thereof. The terms 'secure multi-party computation’ and
‘secure computation' can be used interchangeably herein. The terms 'secure com-

putation' and 'secure calculation' can be used interchangeably herein.

[11]

[12]

[13]

[14]

[15]

[16]
[17]

The term 'party' is used herein to refer to any entity executing the steps of a cryp-
tographic protocol: a computer program running on a computer system operated by a
human being, or a computer program running on a computer system acting by itself
and without human control; blindly following the cryptographic protocol specification,
or maliciously adhering to the specification; acting alone, or maliciously colluding
with other parties.

The term 'cloud computing system' is used herein to refer to any collection of remote
servers networked together to facilitate the sharing of their resources: the cloud
computing system may be accessible by using a private network or the Internet; the
cloud computing system could be open for public use (public cloud), or could be
operated by a single organization (private cloud), or could be a composition or multiple
clouds (hybrid cloud).

The term 'secure function evaluation' is used herein to refer to a property of the
security model of some cryptographic protocols such that a set of mutually distrustful
parties evaluate a function of their joint inputs without revealing their inputs to each
other; additionally, the result of the evaluation of the function could not also be
revealed to some parties. In more mathematical terms, p parties hold at least a input x;
and they calculate a function F(x;,...,x,) using a cryptographic protocol such that at its
completion, some or all parties know the result of F(x;,...,x,) but learns nothing more
about x; when j does not equal i.

The term 'private function evaluation' is used herein to refer to refer to a property of
the security model of some cryptographic protocols such that a set of mutually dis-
trustful parties evaluate a function of their joint inputs, said function only known to a
party, without revealing their inputs to each other and without the other parties learning
the function; additionally, the result of the evaluation of the function could not also be
revealed to some parties. In more mathematical terms, p parties hold at least a input
and they calculate a function F(x;,...,x,) which is known only to a party ¢, using a cryp-
tographic protocol such that at its completion, some or all parties know the result of
F(x;,...,x,) but learns nothing more about x; when j does not equal i and also nothing
about function F() when j does not equal g.

The term 'and/or’ is used herein to mean both ‘and’ as well as 'or'. For example, ‘A
and/or B' is construed to mean A, B or A and B.

By 'module’ as a term is used herein, it may include hardware and/or software.

According to the present disclosure, a user programmable secure spreadsheet cal-
culation system comprising: a spreadsheet module configured to process user data in
one or more spreadsheet files, said user data comprising user values, user variables
and/or user formulas; and a secure parser module configured to obtain said user data

from said spreadsheet module and to generate a secure program with at least one

[18]

[19]

secure computation protocol using the obtained user data so as to allow computation of
at least one encrypted user spreadsheet result; and a secure cryptographic calculation
module configured to receive said secure program from said secure parser module, and
to compute said at least one encrypted user spreadsheet result by executing said secure
program. According to this embodiment, one its main advantages is that spreadsheets
are reinterpreted as secure programs that use secure computation protocols, whose
encrypted results after their execution can be further reused in other secure cal-
culations, or even stored without further processing. Another advantage is that the
secure parser module interprets all the user data obtained from spreadsheets, providing
retro-compatibility with already existing spreadsheet files and minimizing the need for
changes. Yet another advantage resides in the novel generation of secure programs
comprising secure computation protocols and using obtained user data from
spreadsheets, and their computation done by a secure cryptographic calculation
module: all these steps are heavily optimized for maximum speed and security as
described herein, using an optimizing compiler and the automatic combination of the
best techniques for secure computation, re-adjusted based on the profiling of current
and previous executions.

According to another embodiment, said secure cryptographic calculation module is
additionally configured to transmit the at least one encrypted user spreadsheet result to
said secure parser module and said secure parser module is additionally configured to
decrypt the received at least one encrypted user spreadsheet result and to provide said
decrypted user spreadsheet result to said spreadsheet module. The main benefit of this
embodiment is that the encrypted results of the secure calculations are transmitted back
to users to be decrypted and displayed on their spreadsheet interfaces, or to update
other variables and formulas which in turn may result in further secure calculations.
The results from a secure calculation therefore may remain encrypted for use in other
secure calculations or could be decrypted to be used as input to other secure cal-
culations, but they are preferably displayed on the user's spreadsheet interface.

According to a further embodiment, the user programmable secure spreadsheet cal-
culation system is implemented as an add-in to an existing spreadsheet computer
program, said add-in comprising a secure parser module configured to interpret
spreadsheet values, variables and/or formulas; or as an entirely new spreadsheet
computer program; or as a web application. In an exemplary embodiment, the present
disclosure is implemented as an add-in to Microsoft® Excel® : an important aspect are
the many advantages resulting from reusing legacy spreadsheet files for secure com-
putation with little to none modification. According to this embodiment, its main
advantage is that to achieve retro-compatibility, full spreadsheet formulas and

functions are supported, and not just a basic set of mathematical operations such as

[20]

[21]

sum and multiplication.

According to a further embodiment, the spreadsheet module and the secure parser
module are comprised in a local computing device and the secure cryptographic cal-
culation module system is comprised in a remote computing device, connected with
said local computing device. For example, the remote computing device could be a
cloud computing system from a public provider, or one from a private provider.
According to this embodiment, its main advantage is that secure computations can be
outsourced to cloud computing systems to speedup complex calculations, delegating as
much communication and computational costs as possible and without the cloud
computing systems compromising the privacy of at least the inputs, outputs and/or the
formulas, or combinations thereof. Multiple cloud computing systems could be used to
perform a secure calculation, although preferably just one cloud computing system
from a public provider is used to benefit from the lower network latency of collocated
servers. According to this further embodiment, another advantage is that the compu-
tational power of cloud computing systems and the benefits of secure computation are
transparently offered to the computer user through the easy to use interface of
spreadsheet software, and without complex re-implementations. The data transmitted
between the modules may be transmitted by any suitable way, but preferably over the
Internet using secure communications channels such as SSL or VPNs.

According to a further embodiment, said secure computation protocol comprises at
least one privacy-preserving protocol from a group of privacy-preserving protocols
consisting of: garbled circuits and oblivious transfers, secret sharing, homomorphic en-
cryption, and oblivious random access machines (ORAM), and combinations thereof.
Details of the protocols and cryptographic techniques can be found in the papers cited
herein and in the following books (Prabhakaran, Manoj M.; Sahai, Amit. 'Secure
Multi-Party Computation'. IOS Press, 2013. ISBN 978-1-61499-168-7; Schneider,
Thomas. 'Engineering Secure Two-Party Computation Protocols'. Springer, 2012.
ISBN 978-3-642-30041-7; Hazay, Carmit; Lindell, Yehuda. 'Efficient Secure Two-
Party Protocols'. Springer, 2010. ISBN 978-3-642-14302-1). The main benefit of this
embodiment is the availability of multiple options for secure computation using
different protocols and their different security models under the same interface. For
example, garbled circuits and oblivious transfers may be used for secure computations
between two parties, and secret sharing for 3 or more parties. And although ho-
momorphic encryption could be used for securely computing any spreadsheet formula,
it is preferably used as a tool to aid in speeding up steps of secure computation
protocols: exemplarily, key generation and key sharing between multiple nodes.
Regarding ORAMs, a particular suitable and therefore preferred usage is for secure

computation within large arrays of encrypted data. Another advantage of this em-

[22]

[23]

[24]

bodiment is that the secure parser module generates secure programs automatically
optimized for the best performing protocol, or combinations of them, based on the in-
terpretation done during the parsing phase. The user may choose one particular secure
protocol and secure model of computation, but the default optimized secure program is
the preferred choice. Yet another advantage of this embodiment is that the secure cryp-
tographic calculation module automatically optimizes for the best performing pa-
rameters for secure computation based on current and previous executions. The user
may override these automatically optimized parameters, but the preferred way to
execute secure calculations is to use them.

According to a further embodiment, compiler optimizations methods are carried out
during the spreadsheet formula parsing and code generation phases. Compiler opti-
mization methods may comprise data flow and dependence analysis; and auto-
parallelization; and auto-vectorization; and loop unrolling; and dead code elimination;
and loop interchanging; and loop scheduling over cores; and improving locality of
reference; and software sub-expression elimination; and constant folding and
propagation; and code in-lining; and inter-procedural analysis and optimization; and
combinations thereof. The main advantage of these optimizations is to generate code
with the best performance, since secure computation of any function incurs in a penalty
of various orders of magnitude. Details of the described compiler optimizations can be
found in (Kennedy, Ken; Allen, John R. 'Optimizing compilers for modern archi-
tectures'. Morgan Kaufmann Publishers, 2002, ISBN 1-55860-286-0).

According to a further embodiment, optimizations for the compilation and execution
of Secure Computation Programs are carried out during the spreadsheet formula
parsing, code generation and execution phases. These optimizations may comprise: (1)
calculating the topological order of secure programs to reorder their instructions in
order to minimize their communication costs; (2) and inferring what is known from
inputs and outputs by each party to maximize the computations done locally in a non-
secure way instead of using secure computation protocols, since information known by
all parties does not have to be computed securely and by logical inference algorithms it
can be proven which program's values and/or variables are known by each party even
before the program is executed; (3) and the automatic choice of the best performing
protocols and cryptographic primitives during compilation, execution and Just-In-Time
re-optimization. Better performance is obtained by exploiting the rich structure
provided by the functions of every spreadsheet formula, and by profiling in real-time
their execution for further optimizations.

According to a further embodiment, said secure cryptographic calculation module is
further configured to obtain third-party values, variables and/or formulas from a

directory of encrypted third-party values, variables and/or formulas and said secure

[25]

[26]

[27]

cryptographic calculation module is configured to compute the at least one encrypted
user spreadsheet result by executing the secure program using said third-party values,
variables and/or formulas. The main advantage of this embodiment is the pre-
availability of multiple sources of secret information (for example, but not limited to:
prices, indices, financial ratios, genetic information, etc), which are valuable enough to
justify the use of a secure spreadsheet system even when no other users are available
and ready for secure computation. Another advantage of this embodiment is that
encrypted third-party data may be accessible after its purchase, providing secure
property rights for the effective commerce on information. For example, a user may
buy access to a secret dataset of financial ratios to use it as input for its own secure cal-
culations, without learning anything of said dataset.

According to a further embodiment, said secure cryptographic calculation module is
configured for secure function evaluations or for private function evaluations. The
main benefit according to this embodiment is that when using private function
evaluations, formulas could also be protected: that is, a user of the system may own
secret formulas only known to him, but allow others to compute with these formulas
without these other users learning the formulas, and without the owner of the secret
formulas learning the input data from the other users. And in combination with the
previous embodiment, it allows for the effective selling of proprietary formulas
without giving up their trade secrecy. For example, a user may buy just one secure cal-
culation of a secret formula for credit scoring over its own data, learning just the result
of the secure calculation and not the secret formula.

According to a further embodiment, the spreadsheet module is further configured to
process said one or more spreadsheet files by at least one of following: a digital time-
stamping module, and a digital signing module, and an indexer module of a public
registry of digital files, and combinations thereof. The main advantage of this em-
bodiment is to protect spreadsheet files shared between the users of the system and that
could have been modified to adapt them to the disclosed secure spreadsheet system, so
they can be authenticated and confirmed to come from the right users, preventing man-
in-the-middle attacks and other compromises from outside of the system.

According to a further embodiment, the system further comprises: a catalogue
module of secure functions configured to obtain secure programs associated with
functions that are configured to generate results based on one or more user data as-
sociated with at least one of or more of a secure searcher; a secure indexer; a secure
exchange; a secure auction; a secure settlement system; a secure clearing house; a
secure transaction system; a secure matching market; a secure combinatorial optimizer;
and combinations thereof. The main advantage of this embodiment is that the

spreadsheet functions from commercial spreadsheet software packages are extended

[28]

[29]

[30]

[31]

with a predefined set of functions of very advantageous nature. These functions may be
used to interact with encrypted data within cloud computing systems to check, pool
and update market data information.

According to a further embodiment, the system further comprises a key generation
and distribution module, for generating at least one set of public and private keys and
distributing said keys to at least one of the modules of the system. According to a
further embodiment, techniques for using encrypted data under different public/private
keys are implemented: proxy re-encryption, for reusing encrypted data under different
public/private keys; and secure key generation and distribution, for creating shared
public/private keys; and multi-key fully homomorphic encryption to evaluate any
circuit on encrypted data that might be encrypted under different public keys . The
main benefit of these embodiments is that the generation and distribution of the keys, a
critical part of the security of every system, is carried out in a manner as transparent as
possible to the user. Exemplary, a user joining a secure computation group for secure
calculation is transparently provided with all the keys for all the secure computation
protocols that may be used.

According to a further embodiment, the system further comprises an accelerator
module to speed-up the secure cryptographic calculation module; and a ciphering
module to increase the security of the secure cryptographic calculation module. The
main advantage of this embodiment is the use of specialized hardware for cryp-
tography and secure computation, locally or in a cloud computing system, so that users
can be benefit from speedups and better security. Preferably, the secure cryptographic
calculation module operates without said accelerator module or ciphering module and
no further dedicated module is needed in the secure spreadsheet system, advan-
tageously reducing the complexity and cost of the system, although these additional
modules could be of great utility in both local and cloud systems. Exemplary, spe-
cialized hardware is designed for secure computation and built for both the local and
cloud settings, providing speedups of various orders of magnitude.

According to a further embodiment, the system further comprising an interactive
assistant module to suggest re-arrangements of the formulas to the user. The main
benefit of this embodiment being that the user is assisted in choosing the best
performing formulas and rewriting them in case they weren't fit for secure com-
putation, for example, when they feature a function that can't be securely computed.
Preferably, the user accepts all the modifications that the interactive assistant module
proposes without the need of further changes

According to a further embodiment, the secure parser module is furthermore
configured to interpret multidimensional expression languages and data analysis ex-

pressions. According to this embodiment, its main advantage is that languages closely

[32]

[33]

[34]

[35]

related but different from spreadsheet formulas are also supported: MultiDimensional
eXpressions (MDX) is a calculation language similar to spreadsheet formulas used to
query OLAP databases; and Data Analysis eXpressions (DAX) is a language for
querying and calculating multidimensional models.

According to a further embodiment, a computer-readable medium including contents
stored thereon which, when executed by the one or more computers, cause the one or
more computers to perform secure spreadsheet calculations, comprising acquiring user
data from a spreadsheet module, and parsing to interpret said acquired user data, and
generating a secure program with at least one secure computation protocol using the
acquired user data so as to allow computation of at least one encrypted user
spreadsheet result, and transmitting said secure program, and receiving said secure
program, and computing said at least one encrypted user spreadsheet result by
executing said secure program.

According to a further embodiment, a computer implemented method of secure
spreadsheet calculation comprising acquiring user data from a spreadsheet module, and
parsing to interpret said acquired user data, and generating a secure program with at
least one secure computation protocol using the obtained user data so as to allow com-
putation of at least one encrypted user spreadsheet result, and transmitting said secure
program, and receiving said secure program, and computing said at least one encrypted
user spreadsheet result by executing said secure program.

According to a further embodiment, a secure parser module for use in a user pro-
grammable secure spreadsheet calculation system configured to obtain user data
comprising user values, user variables and/or user formulas from a spreadsheet
module, and to generate a secure program with at least one secure computation
protocol using the obtained user data so as to allow computation of at least one
encrypted user spreadsheet result by a secure cryptographic calculation module. As
disclosed herein, the secure parser module is, by itself, of enough advantage to be
considered standalone: exemplarily, multiple user programmable secure spreadsheet
calculation systems could share one secure parser module located in a cloud computing
system or locally accessible over a local area network, to prevent said systems from
generating a secure program multiple times and benefit from better performance.

According to a further embodiment, a secure cryptographic calculation module for
use in a user programmable secure spreadsheet calculation system configured to
receive a secure program from a secure parser module, and to compute at least one
encrypted user spreadsheet result by executing said secure program. As disclosed
herein, the secure cryptographic calculation module is, by itself, of enough advantage
to be considered standalone: exemplarily, multiple user programmable secure

spreadsheet calculation systems could share one secure cryptographic calculation

[36]

[37]

[38]

[39]

[40]

10

module located in a cloud computing system or locally accessible over a local area
network, to speed-up secure calculations by centralizing at least a fraction of the

execution of a secure computation protocol and benefit from better performance.
The present disclosure has been summarily described in the preceding paragraphs: it

relates to spreadsheet calculation, and in particular it relates to a system and a method
and a computer-readable medium for secure computation on spreadsheet files, enabling
the secure computation of spreadsheet formulas without disclosing input data and op-
tionally the resulting outputs; the privacy of the formulas may optionally be
guaranteed. Secure computation over private data enables parties to calculate and mine
datasets preserving the privacy of their data, providing secure property rights for data
and formulas. In the present disclosure, these advanced data processing features are in-
corporated onto spreadsheet software packages to leverage current investments on
spreadsheet files and technologies: in this regard, it improves the state of the art of
spreadsheet technologies since the secure computation of arbitrary spreadsheet
formulas have never been carried out, and they will be of great utility for financial cal-
culations or genetic data, among other likely usages. And regarding the field of secure
multi-party computation, the present disclosure improves the current state of the art by
offering the automatic combination of the largest number of crypto-primitives for
secure multi-party computation in a user-friendly interface. Other methods, systems,
modules, media, and/or computer program products according to embodiments of the
present disclosure will be or become apparent to one with skill in the art upon review
of the following drawings and detailed description. It is intended that all such ad-
ditional systems, modules, methods, media and/or computer program products be
included within this description, be within the scope of the present disclosure, and be
protected by the accompanying claims.

Brief Description of Drawings

Description of Drawings

The above and other objects, features and advantages of the present disclosure will
become apparent from the following description of embodiments, in which:

FIG 1. is a schematic diagram illustrating a secure spreadsheet calculation system in
accordance to the present disclosure, with the additional modules of a key generation
and distribution module and a secure parser module remotely connected to a public
directory of encrypted values, variables and/or formulas.

FIG 2. is a flowchart illustrating a first exemplary execution flowchart of the
modules of the present disclosure, focused on a sequential description of the in-
teractions of the modules.

FIG 3. is a flowchart illustrating a second exemplary execution flowchart of the

11

system of the present disclosure, focused on its cryptographic aspects.
[41] FIG 4. is a schematic diagram illustrating a secure spreadsheet calculation system in

accordance to the present disclosure, in which secure computations are outsourced to
be executed within just one cloud computing system.

[42] FIG 5. is a schematic diagram illustrating a secure spreadsheet calculation system in
accordance to the present disclosure, in which secure computations are outsourced to
be executed within multiple cloud computing systems.

[43] FIG 6. is a schematic diagram illustrating a secure spreadsheet calculation system in
accordance to the present disclosure, in which secure computations are executed
between client computers and without using an external cloud computing system.

[44] FIG 7. is a GUI diagram illustrating how secured data and formulas are differentiated
in a spreadsheet from normal ones in accordance with an aspect of the present
disclosure.

[45] FIG 8. is a GUI diagram illustrating a formula rewriting assistant that guides the user
in writing proper secure formulas in accordance with an aspect of the present
disclosure.

[46] FIG 9. is a schematic diagram illustrating the different modules of a secure

spreadsheet calculation system in accordance to the present disclosure.
Disclosure of Invention
Detailed description of the embodiments

[47] The inventive subject matter is described with specificity to meet statutory re-
quirements. However, the description itself is not intended to limit the scope of this
patent. Rather, it is contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or combinations of steps similar to
the ones described in this document, in conjunction with other present or future tech-
nologies. Although the present disclosure as described below references examples in
which secure calculations are done between three parties and three servers, the
principle applies to two or more number of parties and two or more number of com-
putation servers.

[48] The following figures 1-3 provide a protocol-level perspective of the present
disclosure; figures 4-6 provide a systems-level perspective of the present disclosure;
figures 7-8 describe the user interface of the present disclosure; figure 9 provides an
exemplary instantiation on a computer system.

[49] FIG. 1 illustrates a schematic diagram illustrating a secure spreadsheet calculation
system in accordance to the present disclosure. The system 600 comprises a
spreadsheet module and a secure parser module 601 in direct connection or remotely

connected 607 to a secure cryptographic calculation module 603, said secure parser

[50]

[51]

12

module remotely connected 605 to a key generation and distribution module 602, and
said secure parser module remotely connected 606 to a publicly accessible directory of
encrypted values, variables or formulas 604. The spreadsheet module 601 holds the
ordinary user interface of a spreadsheet application, as described in the next figures,
extended with the secure computation functionality mentioned in the previous figures.
The key generation and distribution module 602 generates and distributes public and
private keys to the participating spreadsheet modules and secure parser modules 601: it
could serve as a generator and storage of public keys typical of traditional PKI infras-
tructures, or it conjointly generates public-private key pairs between itself and a client
or between itself or multiple clients by using a secure computation protocol. The
publicly accessible directory 604 contains a public and hierarchical directory of secret
datasets, lists of encrypted values, variables and/or formulas, as if they were taken
from the spreadsheets of the users of other computation groups, as sources of data to
securely compute on them, and available to spreadsheet modules and secure parser
modules 601 and said publicly accessible directory also directly or remotely connected
608 to secure cryptographic calculation modules 603: these datasets may contain
datasets from multiple industries (finance, biomedical and earth sciences research, ...)
and may be offered for free or for payment. Furthermore, formulas can also be part of
said public and hierarchical directory: the usefulness of this particular feature is
evident with the secure cryptographic calculation module configured for private
function evaluations, enabling the effective selling of proprietary formulas without
revealing their exact nature and structure.

Included herein is a set of flow charts representative of exemplary methodologies for
performing novel aspects of the disclosed system. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein, for example, in the form of
a flow chart or flow diagram, are shown and described as a series of acts, it is to be un-
derstood and appreciated that the methodologies are not limited by the order of acts, as
some acts may, in accordance therewith, occur in a different order and/ or concurrently
with other acts from that shown and described herein. For example, those skilled in the
art will understand and appreciate that a methodology could alternatively be rep-
resented as a series of interrelated states or events, such as in a state diagram.
Moreover, not all acts illustrated in a methodology may be required for a novel imple-
mentation.

FIG. 2 illustrates a first exemplary execution flowchart of the modules of the present
disclosure, focused on a sequential description of the interactions of the modules. At
405, the program implementing a secure spreadsheet is loaded, which could exist in
various types (as a secure parser loaded into the secure spreadsheet application by

means of its 'add-in’ extensibility functionality; as a standalone secure spreadsheet ap-

[52]

13

plication; as a web application, among others). At 410, each party gets connected to a
secure computation group; groups may exist in a local network or available on cloud
computing systems, and the user is able to configure the group that he wants to join to.
At 420, users load a workbook in the spreadsheet application with values, variables
and/or formulas revised to be compatible with the present disclosure: if a formula has
not yet been revised, a 'Formula Rewrite Assistant' module may be used, as described
in more detail below in FIG. 8. At 425, at least one user requests the execution of a
secure calculation. At 430, it's checked whether the involved values, variables, cells,
fields and/or formulas in the calculation have been designated to be processed in a
secure way: in the negative case, a formula evaluation without any secure computation
facility is carried out at 435. In the positive case, at 440 a parser module interprets all
the involved formulas, values and/or variables to generate secure programs that
implement secure computation protocols equivalent to the involved formulas, values
and/or variables, optimized for the selected security models and environment of
execution (as described in more detail below in the exemplary flowchart of FIG. 3). At
445, the involved values, variables, cells and/or formulas are encrypted with the
required keys according to the selected protocols, in such a way that only each user is
able to decrypt their own. At 450, the secure cryptographic calculation module runs the
generated secure programs and the secure computation protocols they specify (as
described in more detail in the exemplary protocols below): this may be preceded by
sending the data generated at 445 to an external secure cryptographic calculation
module that resides in an external cloud computing system. At 455, the secure cryp-
tographic calculation module reaches the end of the secure computation protocol as
specified by the generated secure programs: at 460, the encrypted results from the
execution of the secure computation protocols are returned to the clients, which may
require transmitting the encrypted results from the cloud computing systems through
communications channels (among others: Internet, a private network or a VPN). At
465, the parser module at the clients decrypt their results and update whatever cells or
variables are affected by them, possibly showing the results on the screen: as a
collateral effect of updating cells, the returned data may also produce the start of more
secure computations, restarting at 470 the described execution loop to 430. Otherwise,
at 475 the end of the execution is reached.

The secure parser module according to the present disclosure is configured to carry
out the following steps: as spreadsheet formulas can exist in multiple languages and
the complete set of functions may be unknown as they vary from version to version, no
unambiguous Backus-Naur Form grammar could be constructed. As a substitute, a
state and stack-based tokenizer is used to obtain a tokenized representation of the

formulas in Reverse Polish Notation. Then, the shunting-yard algorithm is used to get

[53]

[54]

14

an Abstract Syntax Tree (AST) of the formulas; these abstract syntax trees are
inspected to find references to other cells and formulas, and the process is repeated
until a complete representation of formulas and cells involved in a calculation is
obtained.

A first batch of optimizations is applied to the generated ASTs (exemplarily, ex-
pression simplification, dead-code removal and logical inferences) to prevent from
secure computing formulas that could be calculated locally in a secure way (as
described in more detail below in FIG. 3). Then, a plurality of expression rewriting
rules is used to process and optimize the ASTs, the rewritten ASTs being semantically
equivalent to the original ones but with better expected overall performance. Said
rewriting rules include rules that calculate complexity-measures of the ASTs to
determine the complexity of the expressions represented by an AST and the
complexity of the rewritten expressions represented by an AST: said complexity
measure is estimated in multiple dimensions (CPU cycles, memory, network rounds
and network bandwidth) and considering several secure implementations varying on
the secure computation protocol used for implementing a given functionality. Ac-
cordingly, some implementations of the present disclosure feature tables of the
complexity measure of spreadsheet functions: that is, for each spreadsheet function
there are estimations of the complexity to calculate said spreadsheet function for
multiple secure computation protocols, multiple dimensions (CPU cycles, memory,
network rounds and network bandwidth) and multiple parameters (number of parties p,
length of bits n of the operands, number of entries e involved). In some imple-
mentations, the measure of complexity of a spreadsheet function is given by
performing a traversal over the nodes of an AST to determine an estimation of the
complexity to securely calculate said function. In case there aren't default settings pre-
determining the secure computation protocol to use, multiple implementations for
secure computation will be considered when applying the plurality of expression
rewriting rules. In some implementations, computations are carried out by the secure
parser module to determine the best expression rewriting rules to be applied to the
ASTs: in some examples, nodes are visited in a breadth-first fashion to determine the
best rewriting rule that could be applied. It is the case that optimizing with an ex-
pression rewriting rule could be estimated to be the best local optima, but not a global
optima: consequently, multiple tree traversals are carried out to deduce the best ex-
pression rewriting rules to be applied.

Next, taking as input the ASTs, code is emitted with calls to the methods and objects
of the libraries available for secure computation (as described in more detail below in
FIG. 3): the generation and compilation of secure programs from the formulas, values

and/or variables contained within spreadsheets is done by an optimizing trial-mandate

[55]

[56]

[57]

[58]

15

compiler configured to maximize computation performance, minimize communication
costs and enhance the security of the calculations, as explained herein. The user is able
to modify these tradeoffs by changing the parameters of the secure cryptographic cal-
culation module before running any secure program.

In some examples, a secure program is executed by all parties of a secure calculation:
said secure program contains all the instructions to be executed and all the parties
know the functionality of the secure program in advance. In some examples, a secure
program may contain a set of instructions only known to a party or a set of parties and
no party knows all the functionality in advance. Said lack of full knowledge of the
functionality of a secure program may not necessarily impact the security of said
secure program and may be necessary to implement functionality specific to a party,
such as sending and receiving and decrypting an encrypted result only intended to said
party.

Additionally, the secure parser module could be configured to interpret other
computer languages different from spreadsheet formulas: Multidimensional Ex-
pressions (MDX), a query language for OLAP databases as described by the 'Multidi-
mensional Expressions Reference’ available at the Microsoft's online Developer
Network; and Data Analysis Expressions (DAX), a formula and query language as
described by the 'Data Analysis Expressions Reference' available at the Microsoft's
online Developer Network; and other computer languages of similar purposes.

The secure cryptographic calculation module according to the present disclosure is
configured to securely compute using generalized Secure Multi-Party Computation
techniques (SMPC), abstracting away multiple cryptographic protocols, primitives and
techniques to provide the most efficient methods of secure computation for each
function/formula and execution environment. Further details of these cryptographic
protocols, primitives and techniques appear in the following publications, the contents
of which are incorporated herein by way of reference:

. In some examples, Oblivious Transfer (OT) is a secure computation protocol
between a sender and a receiver, complete for secure computation: in a secure
OT protocol the sender has n messages and the receiver has an index i, said
receiver wishing to receive the i-#2 among the sender's messages without the
sender learning index i and the receiver learning nothing about the other
messages. Details for their efficient implementation can be found in (Asharov,
Gilad; Lindell, Yehuda; Schneider, Thomas; Zohner, Michael. 'More efficient
oblivious transfer and extensions for faster secure computation'. Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, Pages 535-548).

. In some examples, secret sharing refers to methods for distributing a secret

16

amongst a group of parties, each of whom is allocated a share of the secret:
the secret can be reconstructed only when a sufficient number of shares are

combined together. More formally, [x] denotes the secret-shared value x & Fq

parties among p, P such that any R A+1) /2] of those can recover the

secret. Regarding basic operations, [x]+[y], [x]+c and ¢[x] can be computed
locally by each party p; using her shares of x and y while the computation [x][

y] is mandatorily interactive for R p+1)/2 parties. Details for the currently

most efficient implementation of protocols based on secret sharing, optimized
with shared MACs and a preprocessing offline phase that interchanges
random data between the parties, can be found in (Damgard, Ivan; Keller,
Marcel; Larraia, Enrique; Miles, Christian; Smart, Nigel. Tmplementing AES
via an actively/covertly secure dishonest-majority MPC protocol' SCN 2012,
volume 7485 of LNCS 7485, pages 241-263; Damgard, Ivan; Keller, Marcel;
Larraia, Enrique; Pastro, Valerio; Scholl, Peter; Smart, Nigel. 'Practical
Covertly Secure MPC for Dishonest Majority or: Breaking the SPDZ Limits'
ESORICS 2013, pp. 1-18; Damgard, Ivan; Pastro, Valerio; Smart, Nigel;
Zakarias, Sarah. 'Multiparty computation from Somewhat Homomorphic En-
cryption' CRYPTO 2012, LNCS 7417, pp. 643-662; Keller, Marcel; Scholl,
Peter; Smart, Nigel. 'An architecture for practical actively secure MPC with
dishonest majority’ Computer & Communications Security 2013, pp.
549-560). The systems disclosed herein enables the delegation of secure com-
putations to servers in the cloud that may be GPU-enabled and inter-
connected with high-performance communication channels with RDMA,
currently the fastest way to reduce the communication overhead of secret
sharing schemes.

In some examples, garbled circuits allow at least two parties with inputs x and
v, respectively, to evaluate a pre-agreed arbitrary function f{x,y) without
leaking any information about their inputs beyond what is implied by the
function output. One party, acting as circuit generator, generates an encrypted
version of a Boolean circuit computing f'by generating a collection of garbled
gates forming said garbled circuit, said garbled gates generated by associating

two random cryptographic keys with each wire i of the circuit, -® encoding a
i
0-bit and 44, encoding a 1-bit, then for each gate g of the circuit with input
i
wires 7, j and output wire k, the generator creates a garbled gate computing

Enct, ., ('wff\a,,z:j}} for all inputs 4 b, € {Q);}; the second party, acting as

17

circuit evaluator, obliviously computes the output of the circuit without
learning any intermediate values by receiving from the generator the keys for
the generator's inputs and obtaining the input-wire keys for the evaluator's
input by oblivious transfer, so then given one key for each input wire of the
circuit the evaluator can compute a key for each output wire of the circuit by
decrypting the appropriate encrypted data given keys w;,w; associated with
both input wires i,j of garbled gates and obtaining the actual output of f using
the mapping from output-wire keys to bits. In some examples, garbled circuits
are combined with secret shares so that each input and output function result
must be a secret share; then, garbled circuits representing a function f can be
extended using an additional input r by the circuit generator to use it as a
secret-shared return value of the non-extended function f, which could be
further used for homomorphic encryption. Details for their efficient imple-
mentation can be found in (Kreuter, Benjamin; Shelat, Abhi; Shen, Chih-Hao.
"Towards billion-gate secure computation with malicious adversaries'.
USENIX Security Symposium - 2012, pages 285-300, 2012).

In some examples, homomorphic encryption refers to methods of encryption
allowing computations to be carried out on encrypted data. More formally,

with ¢ = £ {x} denoting the encryption of x under the public key of party A
producing encrypted data ¢ and 73 {c} denoting the decryption of said

encrypted data ¢, when using a fully homomorphic encryption schemes the

following relationships hold: p, {£, {(x)+ E, (y‘)’): x+y for the sum

operation and D, (EA {x}E, (]))z x -y for the multiplication operation;

K

non-fully homomorphic encryption schemes refer to the case when just one of
the two previous relationships hold. In some examples, homomorphic en-
cryption can be extended with secret sharing: at least a variable can be secret
shared between the parties of a cryptographic protocol using homomorphic
encryption. Before the advent of Fully Homomorphic Encryption, practical
systems using non-fully homomorphic encryption were of no utility: in
(Fouque, Pierre-Alain; Stern, Jacques; Wackers, Geert-Jan. 'CryptoComputing
with rationals', Proceedings of the 6% International Conference on Financial
Cryptography, pp 136-146, 2002), the addition of two rational numbers was
not possible and the multiplication can only be done to a known integer. The
immediate consequences of these limitations were that only the sum and
product operations could be considered because more complex functions
could not be undertook, excluding the hundreds of functions that are also part

of spreadsheet software; moreover, multi-party computation was not even

18

considered. After the introduction of Fully Homomorphic Encryption, it
became possible to compute general functions but with performance some
orders of magnitude slower than those achieved by the state of the art of secret
sharing schemes or garbled circuits, although still being more efficient on a
round complexity perspective: details for their efficient implementation and
their tradeoffs with other schemes can be found in (S. Myers, M. Sergi, and
Abhi Shelat. "Threshold fully homomorphic encryption and secure com-
putation'. IACR Cryptology ePrint Archive, 2011:454, 2011; Gentry, Craig;
Halevi, Shai; Smart, Nigel. 'Fully homomorphic encryption with polylog
overhead'. EUROCRYPT 2012, LNCS 7237, pp. 465-482; Asharov, Gilad;
Jain, Abshishek; Lopez-Alt, Adriana; Tromer, Eran; Vaikuntanathan, Vinod;
Wichs, Daniel. 'Multiparty computation with low communication, com-
putation and interaction via threshold FHE. EUROCRYPT 2012, LCNS
7237, pages 483-501; Choudhary, Ashish; Loftus, J. Orsini, Emmanuela;
Patra, Arpita; Smart, Nigel. ‘Between a Rock and a Hard Place: Interpolating
Between MPC and FHE', Advances in Cryptology - ASIACRYPT 2013,
LNCS 8270, pp. 221-240).

In some examples, Oblivious Random Access Machines refers to methods of
hiding access patterns to a server storing encrypted information. More
formally, input y of the client is a sequence of data items denoted by ((vy,x,
);---»(Vn,X,)), and a sequence of read operations to retrieve the data of the item
indexed at a position and write operations to set the value of an index
position; the access pattern A(y) is the sequence of accesses to the server
storage system, containing both the indices accessed in the system and the
data items read or written; an oblivious RAM system is considered secure if
for any two inputs y,y" of the client, of equal length, the access patterns A(y)
and A(y') are computationally indistinguishable for anyone but the client. In
some implementations of ORAMs, techniques are used such as oblivious
sorting algorithms and cuckoo hashing to map each item to two potential
entries of a hash table. ORAMs exhibit significant speed-ups in comparison to
the shortcomings of the circuit approach for Secure Computation because
there are functions that are less efficient when implemented as a circuit of
possibly very wide breadth and depth, as in the case of accessing an array for
just one position, which has constant complexity in the ORAM model but
linear complexity inherent in the circuit model. Details for the currently most
efficient implementations based on ORAMs appear in (Gentry, Craig;
Goldman, Kenny A.; Halevi, Shai; Jutla, Charanjit S.; Raykova, Mariana;
Wichs, Daniel. 'Optimizing ORAM and Using It Efficiently for Secure Com-

[59]

19

putation'. Privacy Enhancing Technologies 2013, pp. 1-18; Shaun Wang,
Xiao; Chan, T.-H. Hubert; Shi, Elaine. 'Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound'. Cryptology ePrint Archive: Report
2014/672).

. Private Function Evaluation: for boolean circuits, the relaxation of the privacy
model of Semi-Private Functions may be used, in which the boolean circuit's
topology is revealed to the evaluator but not the functionality of the gates, as
detailed in (Paus, Annika; Sadeghi, Ahmad-Reza; Schneider, Thomas.
'Practical Secure Evaluation of Semi-Private Functions'. Applied Cryp-
tography and Network Security 2009. LNCS 5536, pp. 89-106). For
arithmetic circuits, details for their most currently efficient implementation
can be found in (Mohassel, Payman; Sadeghian, Seed. 'How to Hide Circuits
in MPC an Efficient Framework for Private Function Evaluation'. Advances
in Cryptology - EUROCRYPT 2013. Lecture Notes in Computer Science
Volume 7881, 2013, pp 557-574; Payman Mohassel, Saced Sadeghian, and
Nigel P. Smart. 'Actively Secure Private Function Evaluation'. IACR
Cryptology ePrint Archive 2014: 102, 2014), which obtains actively secure
PFE with O(g*log g) complexity, compared to O(g’) of universal circuits and
O(g*log g) with a large implied constant for boolean circuits, where g is the
circuit size.

. Hardware-aware secure computation: further details of the application of
hardware to speed-up and/or increase the security of the secure cryptographic
calculation module using an accelerator module or a ciphering module, re-
spectively, appear in the following publications (Jdrvinen, Kimmo;
Kolesnikov, Vladimir; Sadeghi, Ahmad-Reza; Schneider, Thomas. 'Efficient
Secure Two-Party Computation with Untrusted Hardware Tokens'. In-
formation Security and Cryptography, pages 367-386, 2010; Tate, Stephen R;
Vishwanathan, Roopa. 'General Secure Function Evaluation using standard
trusted computing hardware'. Ninth Annual International Conference on
Privacy, Security and Trust, pages 221-228, 2011), the contents of which are
incorporated herein by way of reference.

Some of the previous secure schemes (e.g. homomorphic encryption) require that the
same public/private keys be used between multiple client/users for encrypted data to be
evaluated conjointly, that is, encrypted data cannot be produced under different public/
private keys. To solve this shortcoming, various approaches can be considered. In one
implementation, proxy re-encryption techniques are implemented (Blaze, Matt;
Bleumer, Gerrit; Strauss, Martin. “Divertible protocols and atomic proxy cryp-
tography”. EUROCRYPT 1998, LNCS 1403, pages 127-144, 1998; Zheng, Qingji;

[60]

[61]

20

Zhang, Xinwen; “Multiparty Cloud Computation”. CoRR abs/1206.3717, 2012;
Samanthula, Bharath K.; Howser, Gerry; Elmehdwi, Yousef; Madria, Sanjay. “An
efficient and secure data sharing framework using homomorphic encryption in the
cloud”. Proceedings of the First International Workshop on Cloud Intelligence, Article
No 8, 2012): these techniques allow the re-encryption under a new and more general
proxy re-encryption key of the encrypted data which was previously encrypted under
the key of just one user. In another implementation, secure distributed key generation
techniques (Goldberg, Ian. “Distributed Key Generation in the Wild”. Cryptology
ePrint Archive 2012/377, July 2012) are used, which allow the creation of common
public/private keys between a set of users/clients. In another implementation, multi-
key fully homomorphic encryption is used to evaluate any circuit on encrypted data
that might be encrypted under different public keys (L6pez-Alt, Adriana; Tromer,
Eran; Vaikuntanathan, Vinod. “On-the-fly multi-party computation on the cloud via
multi-key fully homomorphic encryption”. Proceedings of the Symposium on Theory
of Computing 2012, pages 1219-1234).

The secure cryptographic calculation module and/or the compiler of the secure parser
module may be configured to determine whether the secure program is secure under a
security model before executing it. For that purpose, statements of said secure program
may be generated well-typed according to a type system extended with a secure type
system provided with a plurality of typing rules describing security types that are
assigned to one or more statements of the secure program, the process of verifying that
said secure program is well-typed including data flow examination to determine that no
type errors exist: execution of said well-typed secure programs are provably ensured to
be secure under a security model, such as but not limited to, the malicious security
model or the semi-honest security model, computational security model or uncon-
ditional security model, active or passive adversaries, static or adaptive adversaries. A
compiled secure program may contain Typed Assembly Language to preserve typing
information after compilation.

FIG. 3 illustrates a second exemplary execution flowchart of the system of the
present disclosure, focused on its cryptographic aspects (this figure explains in more
detail the steps 440-465 from FIG. 2). At 501, the cells, formulas, values and/or
variables implied in the secure computation are identified from the spreadsheet
interface, to serve as input to the generator of secure programs specified at 502: in the
first step of this module, at 503, a parser interprets the formulas of the spreadsheet ap-
plication, which may exist in a proprietary or in a standardized format, and which may
require extracting and interpreting more values, variables and/or formulas from the
spreadsheet due to their nested nature. At 504, an optimizer may reposition and remove

values, variables and the terms of the formulas to speed-up the secure computation

[62]

[63]

21

according to the selected protocols and security models. At 505, the code emitter

generates the code containing the secure programs equivalent to the formulas, values

and/or variables from the spreadsheet, intended to be executed within the framework of
the secure cryptographic calculation module and represented at 506: each user is
assigned their own secure cryptographic calculation module, with the input values and/

or variables encrypted depending on whether the protocol uses garbled circuits 507

(including oblivious transfers as is customarily implemented), secret sharing 508, ho-

momorphic encryption 509 or oblivious random access machines 510. At 511, the

secure program is sent to the secure cryptographic calculation module assigned to each
user: this secure cryptographic calculation module contains methods, objects and other
programming resources that will be used and invoked by the generated secure
programs; that is, there are pre-installed libraries of objects and methods for carrying
out secure computations using the described protocols and techniques such as, but not
limited to, secret sharing (createShares(), getCoefficients(), interpolate(), recon-
structSecrets(), openShares(), sum(), minus(), multiply(), divide(), exp(), log()), ho-
momorphic encryption (encrypt(), decrypt(), recrypt(), genKeys(), eval()), garbled
circuits (createCircuit(), garbleCircuit(), computeCircuit(), getOutWires(), setTableOf-

Translations(), verify()), oblivious transfer (transfer(), batchTransfer(), getSigma(),

getXO(), getX1()), oblivious random access machines (createBlock(), readyBlock(),

inputBlock(), readBlock(), outputBlock(), condReadBlock(), removeBlock(), add(),
condAdd(), pop(), condpop(), xor(), init(), flush()). The generated secure programs use
these methods and objects. During the execution of the secure programs at the secure
cryptographic calculation modules 511, data will interchanged 513 as required by the
secure computations protocols which are described in more detail below. Bi-directional
secure communication channels 512 may be required (among others: Internet, a private
network or a VPN).

Implementations of the present disclosure can be illustrated by way of examples. Im-
provements on the state of start of secure computation to enable the secure calculation
of spreadsheets in a way sufficiently fast for the present disclosure to be practical and
implemented in the secure cryptographic calculation module, are given below by way
of examples:

. In some examples, some fragments of the final optimized code do not include
cryptographic operations, since it logically could be inferred that some cal-
culations can be locally executed, thereby minimizing the number of secure
interactions between the parties: accordingly, implementations of these opti-
mizations can reduce the computational complexity of the un-optimized cal-
culations (for example, from exponential or quadratic time, to constant time).

More formally, for each spreadsheet formula or set of spreadsheet formulas a

22

program P is generated, each party having his own set of inputs / and his
result R for said program P: a party is said to be able to infer the value of an
intermediate variable v in P, if said party is able to calculate said intermediate
variable v from its inputs / and result R regardless the inputs of other par-
ticipants. To infer said intermediate variable v in P, techniques from template-
based program verification may be used to produce formulas that, when
verified using a Satisfiability Module Theory (SMT) solver, establishes the
party's knowledge of v and the actual formula to obtain said value using inputs
I and result R. It is appreciated that the main advantage of these optimizations
is that computations done locally could be of various orders of magnitude
faster than any secure computation protocol, independent of the underlying
cryptographic technique in use (homomorphic encryption, garbled circuits,
oblivious transfers, secret sharing or ORAMs). Details of these optimizations
can be found in (Florian Kerschbaum. 'Automatically Optimizing Secure
Computation'. CCS '11 Proceedings of the 18th ACM Conference on
Computer and Communications security, Pages 703-714; Florian
Kerschbaum. 'Expression rewriting for optimizing secure computation'.
CODASPY '13 Proceedings of the third ACM conference on Data and ap-
plication security and privacy, Pages 49-58; Florian Kerschbaum. 'An in-
formation-flow type-system for mixed protocol secure computation'. ASIA
CCS '13 Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security, Pages 393-404; Rastogi, Aseem.
Mardziel, Piotr. Hicks, Michael. Hammer, Matthew 'Knowledge Inference for
Optimizing Secure Multi-party Computation'. Proceedings of the 8" ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security,
Pages 3-14).

In some examples, the topological order of spreadsheet functions has already
been computed and instructions for them have already been reordered to
minimize their communication costs by reducing the number of execution
rounds whenever securely computed, in such a way that a library of pre-
cached secure spreadsheet functions is available by default before the secure
spreadsheet functions are executed. Details for the described compiler opti-
mization can be found in (Keller, Marcel; Scholl, Peter; Smart, Nigel. "An ar-
chitecture for practical actively secure MPC with dishonest majority"”
Computer & Communications Security 2013, pp. 549-560). And noteworthy
to the implementations of the present disclosure, it’s the combination of some
spreadsheet functions (particularly, linear algebra, statistical and financial

methods) that have been optimized beyond what could be automatically

[64]

[65]

23

achieved just by considering their execution in a sequential order, since
algebraic simplification techniques have been applied to them before
obtaining versions with reordered instructions that minimize their commu-
nication costs by analyzing their topological order: for example,
“LOG(A1*A1*A1)+LOG(A1)” can be simplified to “4*LOG(A1)”, and
“EXP(A1)*EXP(2*A1)” can be simplified to “EXP(3*A1)”.

In some examples, the secure implementation of the spreadsheet functions and
formulas are extensively annotated in their source code to ease the choice of
the best performing protocols and cryptographic primitives. Details of these
execution optimizations can be found in (Schneider, Thomas; Schropfer,
Axel. “Automatic Protocol Selection in Secure Two-Party Computations”,
Applied Cryptography and Network Security, LNCS 8479, 2014, pp.
566-584), although it only considers garbled circuits or homomorphic en-
cryption techniques in the two-party case, ignoring the better performance of
secret sharing methods for secure computation, methods that are also used in
the present disclosure. In some implementations of the present disclosure,
spreadsheet functions may have implementations for better performance, in
the form of specially conceived Secure Computation Protocols: for example,
but not limited to the following, spreadsheet functions dealing with

comparison and exponentiation functionality.

The implementations of the secure computation protocols of the present disclosure in

the secure cryptographic calculation module obtain better performance than what could

be achieved off-the-shelf by using previously technology, exploiting the rich structure

provided by the functions of every spreadsheet formula, and by profiling in real-time

their execution to find more optimizations. Implementations of the present disclosure

can be illustrated by way of examples:

On the secure cryptographic calculation module, there are circuits for
spreadsheet functions with better performance than those obtained by using
generic compilations of the formulas from their source code definition:
protocols using garbled circuits and private function evaluation directly
benefit from these optimizations. By way of example, many financial
formulas (ACCRINT —accrued interest for a security that pays periodic
interest-, AMORLINC —depreciation for each accounting period-, DB
—depreciation of an asset for a specified period-, NPV —net present value of an
investment based on a series of periodic cash flows-, RATE —interest rate per
period of an annuity-, YIELD —yield on a security that pays periodic interest-)
and mathematical formulas (ABS —absolute value of a number-, CEILING

—rounds a number to the nearest integer-, FACT —factorial of a number-,

24

FLOOR -rounds a number down-, GCD —greatest common divisor-, INT
—rounds a number down to the nearest integer-, LCM —least common
multiple-, MDETERM —determinant of a matrix-, MMULT —matrix product
of two arrays-, MOD —remainder from division-, POWER —number raised to a
power-, PRODUCT —multiplies its arguments-, QUOTIENT —integer portion
of a division-, ROUND -rounds a number to a specified number of digits-,
SQRT —positive square root-, SUM —adds its arguments-, TRUNC —truncates
a number to an integer-, among others) have pre-compiled circuits that feature
special optimizations to make them much more faster.

During execution time, Somewhat Homomorphic Encryption schemes are
preferred to fully homomorphic encryption schemes, that is, the costlier steps
of homomorphic computation such as bootstrapping and re-encryption are
avoided whenever possible. Also, knowing the details of the functions to be
securely computed is of great advantage, redounding in a more efficient in-
stantiation of the homomorphic schemes. By way of example, the growth of
the noise produced by each formula can be precisely predicted even for the
most complex spreadsheet functions, that is, the ones requiring the higher
number of calculations (CORREL —correlation coefficient-, FORECAST
—predict a future value by using linear regression-, LINEST —statistics for a
line that best fists a dataset using the least squares method -,
MULTINOMIAL -ratio of the factorial of a sum of values to the product of
factorials-, SERIESSUM —sum of a power series-, SLOPE —slope of the linear
regression-, SUMPRODUCT —sums of the products of the components of
given arrays-) and the depth of the required circuits can be estimated before
their execution.

Regarding ORAMs, some spreadsheet formulas show significant performance
advantages when they are implemented using ORAMs. By way of example,
the spreadsheet formulas VLOOKUP and MATCH are better implemented
with ORAMs when doing binary searches over large sets of data rather than
other methods of secure calculations, since amortized sub-linear costs per
query can be achieved in these settings.

Regarding hardware modules and their application to secure/private function
evaluation, such as an accelerator module and a ciphering module, the present
disclosure may be used in combination with hardware modules (GPUs,
FPGAs, ASICs, smartcards), as referenced in the description of the previous
figure. By way of example, at least some spreadsheet functions can be ef-
ficiently pre-implemented in hardware modules to gain speed-ups in various

orders of magnitude, particularly when using garbled circuits for secure

[66]

[67]

25

multiparty computation.

The parameters of the system, cryptographic protocols and primitives are determined
based on formulas as the ones cited in the following papers (Kleinjung, T.; Lenstra,
Arjen. K.; Page, D.; Smart, Nigel P. "Using the Cloud to Determine Key Strengths".
IACR Cryptology ePrint Archive, 2011:254, 2011; Lenstra, Arjen.K.; Verheul, Eric R.
"Selecting Cryptographic Key Sizes". Proceedings of PKC 2000, Lecture Notes in
Computer Science Volume 1751, pp. 446-465) and current recommendations and best
practices (Smart, Nigel P.; Rijmen, Vicent; Warinschi, Bogdan; Watson, Gaven. "Al-
gorithms, Key Sizes and Parameters Report". Technical Report of the European Union
Agency for Network and Information Security Agency, 2013; Smart, Nigel P. et al.
"ECRYPT 1II Yearly Report on Algorithms and Keysizes (2011-2012)"). The system
may automatically change these parameters to trade security for performance, and
users of the system may override these parameters for ones of their choice.

FIG. 4 illustrates secure spreadsheet calculation system 100 as further discussed
herein and in accordance with the present disclosure. The system 100 comprises a
cloud computing system 104 where parties 102 may outsource secure computations as
detailed on the spreadsheet modules 101: for each party 102 a separated server 105 is
made available on the cloud computing system 104 (preventing that a malicious party
could impact the computations of other parties in case of multiple parties used the
same server) and securely interconnected by communication channels 106 (an internal
network of the cloud computing system). The system 100 also comprises a protocol
component 103 of the secure parser module which the parties 102 use to send
encrypted values, variables and/or formulas to the servers 105 through communication
channels (among others: Internet, a private network or a VPN), so that the cloud
computing system 104 is unable to decrypt them but they still can be used as inputs to
execute a secure computation through communication channels 106. The protocol
component 103 and the executed secure computation computation using the secure
cryptographic calculation module, combines multiple secure cryptographic tech-
nologies (as described in more detail in the exemplary flowcharts of FIG. 2 and FIG. 3)
offering different security models as chosen by the users (computational vs uncon-
ditional security; active vs passive adversaries; static vs adaptive adversaries;
malicious vs semi-honest security model; commodity or trusted hardware; among
others) to carry out the secure computations. After the secure computation has ended,
the servers 105 at the cloud computing system 104 send the encrypted results as
calculated according to the secure computation described by the formulas, using
protocol component 107 of the secure parser module to the parties 102 through com-
munication channels (among others: Internet, a private network or a VPN), so that only

the receiving parties are able to decrypt the outputs to show them on the spreadsheets

[68]

[69]

[70]

[71]

26

101.

Exemplarily, parties 102 may provide their secret data in the form of secret shares
and then go temporarily offline while servers 105 securely compute the encrypted
results: that is, servers 105 act as computational parties, securely computing the
outsourced calculations from parties 102. In said exemplary setting, a number of
servers 105 less than the number of parties 102 may be used.

FIG. 5 illustrates secure spreadsheet calculation system 200 as further discussed
herein and in accordance with the present disclosure. The system 200 comprises
different cloud computing systems 204 where parties 202 may outsource secure com-
putations as detailed on the spreadsheet modules 201: for each party 202 a separated
server 205 is made available on anyone of a set of different cloud computing system
204, securely interconnected by communication channels 206 (among others: Internet,
a private network or a VPN). The purpose of using different cloud computing systems
204 is to provide higher levels of resiliency and security to the parties 202, by
preventing the threat of an attacker controlling one cloud computing system. The
system 200 also comprises a protocol component 203 from the secure parser module
which the parties 202 use to send encrypted values, variables and/or formulas to the
servers 205 through communication channels (among others: Internet, a private
network or a VPN), so that the cloud computing systems 204 are unable to decrypt
them but they still can be used as inputs to execute a secure computation through
secure communication channels 206. Analogously to FIG. 4, secure computations are
carried out using the secure cryptographic calculation module as described in more
detail in the exemplary flowcharts of FIG. 2 and FIG. 3. After the secure computation
has ended, the servers 205 at the cloud computing systems 204 send the encrypted
outputs resulting from the computation described by the formulas, using protocol
component 207 of the secure parser modules to the parties 202 through communication
channels (among others: Internet, a private network or a VPN), so that only the
receiving parties are able to decrypt the outputs to show them on the spreadsheets 201.

Exemplarily, parties 202 may provide their secret data in the form of secret shares
and then go temporarily offline while servers 205 securely compute the encrypted
results: that is, servers 205 act as computational parties, securely computing the
outsourced calculations from parties 202. In said exemplary setting, a number of
servers 205 less than the number of parties 202 may be used.

FIG. 6 illustrates secure spreadsheet calculation system 300 as further discussed
herein and in accordance with the present disclosure. The system 300 does not
outsource the secure computation to cloud computing systems (that is, the secure
parser module and the secure cryptographic calculation module reside in the same

computing device) because the actual execution of the secure computation is

[72]

[73]

27

performed by using the own computers of the parties 302: each party 302 is inter-
connected with the others through secure communication channels 308 (SSL or VPN,
over LAN connections), and the same secure protocol components of the secure parser
module previously described in FIG. 4 and FIG. 5 are used to send and receive
encrypted values, variables and/or formulas. The purpose of not outsourcing the secure
computation to cloud computing systems is to offer a higher level of security in case of
mistrusting external cloud computing systems, even if this means lowering per-
formance. Optionally, a component 309 may be available in the network to speed-up
and secure the computations between the parties 302, as a hardware extension to the
secure cryptographic calculation module as disclosed herein. The protocol components
of the secure parser module and the executed secure computations using the secure
cryptographic calculation module are analogous to those of FIG. 4 (as described in
more detail in the exemplary flowcharts of FIG. 2 and FIG. 3). After the secure com-
putation has ended, the results of the computation described by the formulas are still
encrypted, so that each corresponding party 302 is the only able to decrypt these
outputs to show them on the spreadsheet modules 301.

FIG. 7 is a first exemplary GUI diagram 700 illustrating at a very high level manner
how the present disclosure works in conjunction with a spreadsheet program 701 that
support “add-ins”, such as Microsoft® Excel®, or in a custom program for these
secure calculations. The user interface is described herein only in so far as is necessary
for an understanding of the present disclosure. Generally speaking, when some pre-
determined colors are used to mark a cell containing a formula 705 or a value 706, or
when a pre-determined commentary is used to mark a cell containing a formula 704 or
a value 707, or the contents of the cell are contained within expressions such as “[]
and “=SC(...)”, then they are to be interpreted as cells to be directly processed by the
secure spreadsheet calculation system, in direct contrast to cells not implicitly marked
to be securely computed 708. The button “Execute NOW” 702 is clicked by the user to
start the secure computation, and the button “SCHEDULE” is clicked to trigger the
execution of the secure computation at some time in the future. Whatever the method
of invocation, the parser module of the secure spreadsheet calculation system obtains
values and formulas from the spreadsheet to generate secure programs implementing
secure computation protocols equivalent to the formulas and values contained within
the spreadsheet, the secure cryptographic calculation module computing encrypted user
spreadsheet results by executing said secure programs, and the secure parser module
decrypting them and updating cells with the calculated results (note that resulting
values could appear within the cells themselves, or in adjacent cells, or in other cells
specified by the user).

FIG. 8 is a second exemplary GUI diagram 800 illustrating in a very high level

[74]

[75]

[76]

[77]

28

manner how the Formula Rewrite Assistant 801 operates: the purpose of this Assistant
is to rewrite problematic formulas, remove their ambiguities and/or propose better rep-
resentations of the formulas than can be securely calculated faster by the cryptographic
protocols previously described in FIG. 2 and FIG. 3. The user interface is described
herein only in so far as is necessary for an understanding of the present disclosure. The
input formula 802 from a spreadsheet as described in FIG. 7 is rewritten to an output
formula 803 depending on the checks selected by the user: for example, whether the
formula should be rewritten to optimize execution 804; a check for collapsing the
terms of formulas 805; another check to re-arrange optimizations 806; or another check
to aggregate functions 807. Additional messages may appear explaining the concrete
meaning of each check and the proposed rewritten formula. Finally, the user may
accept or discard the proposed changes using the corresponding “Accept”/”Cancel”
buttons 808.

FIG 9. illustrates an exemplary computer system 900 as further discussed herein and
in accordance with the present disclosure. The system is described herein only in so far
as is necessary for an understanding of the present disclosure. The system 900 can be
used for the operations described in association with the detailed descriptions, imple-
mentations and examples described herein. For example, the system 900 may be
included in any or all of the server components 901, 902 and 903 discussed herein;
these components incorporate a Central Processing Unit 904, a memory 905, a network
device 906, a storage device 907 and a display 908: each of the components 904, 905,
906, 907 and 908 are interconnected using a system bus 909.

The Central Processing Unit 904 executes instructions within the server components
901, 902 and 903 discussed herein. In one implementation, the Central Processing Unit
904 is a single-core and single-threaded Central Processing Unit. In another imple-
mentation, the Central Processing Unit 904 is a multi-core and multi-threaded Central
Processing Unit. The Central Processing Unit 904 executes instructions stored in the
memory 905 or in the storage device 907, processing data in the memory 905 or in the
storage device 907, data which may be transmitted over a network device 906 or which
may be displayed graphically in a user interface on a display 908.

The memory 905 serves as an information store for system 900. In one imple-
mentation, the memory 905 is a computer-readable medium. In another imple-
mentation, the memory 905 is a volatile memory unit. In another implementation, the
memory 905 is a non-volatile memory unit.

The network device 906 is capable of transmitting information to and from other
computer systems 900 or any other computer systems. In one implementation, the
network device 906 transmits information over fiber optic cables. In another imple-

mentation, the network device 906 transmits information over copper cables. In

[78]

[79]

[80]

[81]

29

another implementation, the network device 906 transmits information over mi-
crowaves. In any or all of the previous implementations, the network device 906 may
directly access the memory 905 and the Central Processing Unit 904 may directly
access the network device 906.

The storage device 907 is capable of storing big amounts of data for the system 900.
In one implementation, the storage device 907 is a computer-readable medium. In
various different implementations, the storage device 907 may be a hard disk device, a
floppy disk device, an optical disk device, a tape device, a Network-Attached Storage
device, a Storage-Area Network device or a Cloud Storage device.

The display device 908 is capable of displaying processed data in a user interface. In
one implementation, the display device 908 is a cathode ray tube monitor. In another
implementation, the display device 908 is a liquid crystal display monitor. In another
implementation, the display device 908 is a thin-film transistor monitor. In another im-
plementation, the display device 908 is made from organic light-emitting diodes.

The features can be implemented in digital electronic circuitry, or in computer
hardware, firmware, software, or in a combinations of them. The features, and the
apparatus, can be implemented in a computer program product tangibly embodied in
an information carrier, €.g., in a machine-readable storage device or in a propagated
signal, for execution by a programmable processor; and method steps can be
performed by a programmable processor executing a program of instructions to
perform functions of the described implementations by operating on input data and
generating output. The described features can be implemented advantageously in one
or more computer programs that are executable on a programmable system including at
least one programmable processor coupled to receive data and instructions from, and to
transmit data and instructions to, a data storage system, at least one input device, and at
least one output device. A computer program is a set of instructions that can be used,
directly or indirectly, in a computer to perform a certain activity or bring a certain
result. A computer program can be written in any form of programming language,
including compiled or interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, component, subroutine, or other
unit suitable for use in a computing environment.

Suitable processors for the execution of a program of instructions include, by way of
example, both general and special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer. Generally, a processor
will receive instructions and data from a read-only memory or a random access
memory or both. The essential elements of a computer are a processor for executing in-
structions and one or more memories for storing instructions and data. Generally, a

computer will also include, or be operatively coupled to communicate with, one or

[82]

[83]

[84]

[85]

[86]

30

more mass storage devices for storing data files; such devices include magnetic disks,
such as internal hard disks and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying computer program instructions
and data include all forms of non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM, and flash memory devices;
magnetic disks such as internal hard disks and removable disks; magneto-optical disks;
and CD-ROM and DVD-ROM disks. The processor and the memory can be sup-
plemented by, or incorporated in, ASICs (Application-Specific Integrated Circuits) or
FPGAs (Field-Programmable Gate Arrays) or GPUs (Graphics Processing Units).

To provide for interaction with a user, the features can be implemented on a
computer having a display device such as CRT (Cathode Ray Tube) or LCD (Liquid
Crystal Device) or TFT (Thin-Film Transistor) or OLED (Organic Light-Emitting
Diode) monitor for displaying information to the user and a keyboard and a pointing
device such as a mouse or a trackball by which the user can provide input to the
computer.

The features can be implemented in a computer system that includes a back-end
component, such as a data server, or that includes a middleware component, such as an
application server or an Internet server, or that includes a front-end component, such as
a client computer having a graphical user interface or an Internet browser, or any com-
bination of them. The components of the system can be connected by any form or
medium of digital data communication such as a communication network. Examples of
communication networks include, e.g., a LAN, a RDMA-enabled connection, a WAN,
and the computers and the networks forming the Internet. Those skilled in the art will
appreciate that computer systems have a variety of configurations and protocols that
can be used to communicate data, and thus, no particular configuration or protocol is
considered limiting.

The computer system can include clients and servers. A client and server are
generally remote from each other and typically interact through a network. The rela-
tionship of client and server arise by virtue of computer programs running on the re-
spective computers and having a client-server relationship to each other.

Moreover, the logic flows depicted in the figures do not require the particular order
shown, or sequential order, to achieve the desirable results. In addition, other steps
may be provided, or steps may be eliminated, from the described flows, and other
components may be added to, or removed from, the described systems. Accordingly,
other implementations are within the scope of the following claims.

The present disclosure has been illustrated and described in detail in the drawings
and the foregoing description. Such illustration and description are to be considered il-

lustrative or exemplary and nor restrictive; the present disclosure is not limited to the

[87]

31

disclosed embodiments. Descriptions of additional claimed embodiments follow:

To further protect spreadsheets, additional features beyond secure com-
putation are offered for signing, time-stamping and indexing spreadsheets.
These features are of special usefulness whenever a spreadsheet is adapted for
secure computation, since it may be necessary to share it with other users
before starting a joint secure computation: to guarantee full security, it’s
crucial that file distribution is kept secure from Man-In-The-Middle attacks
and other computer attacks, thus the need to certify that a spreadsheet really
comes from a particular user. To fulfil these objectives, the present disclosure
further comprises: a digital time-stamping module, to securely keep track of
the creation and modification of spreadsheets, said module executing at least
one implementation of a standard trusted time-stamping technologies such as
RFC 3161 (Internet X.509 Public Key Infrastructure Time-Stamp Protocol)
and the ANSI ASC X9.95 Standard for Trusted Timestamps; a digital signing
module, to guarantee the integrity, non-repudiation and authentication of
spreadsheets files, said module executing at least one implementation of
standard signing technologies such as RSA-PSS and ECDSA; and a indexer
module for accessing to a public registry of spreadsheet files, to facilitate the
interchange of secure spreadsheets between users, said module executing at
least one implementation of standard protocols such as SFTP, WebDAYV and
CMIS.

Further to providing a secure re-implementation of spreadsheet functions from
spreadsheet commercial packages available in the market, the present
disclosure leaves open the possibility of extending said set of spreadsheet
functions. In particular, and given the financial applications of the present
disclosure, the following set of provided functions are of upmost utility: the
function SEC_SEARCH(), providing secure search over secret datasets; the
function SEC_INDEXJ(), providing access to secure indexes for updating and
searching purposes; the function SEC_EXCHANGE(), providing access to
secure exchanges to trade financial instruments such as securities, com-
modities, currencies, futures and options using secret parameters such as, but
not limited to: price, quantity and expiration dates; the function
SEC_AUCTION(), providing access to secure auctions using secret pa-
rameters such as, but not limited to: bidding price, reserve price, quantity and
lot composition; the function SEC_SETTLEMENTY(), providing secure
settlement of securities; the function SEC_CLEARHOUSE(), providing
secure clearing services between users; the function SEC_TRANSACTION(),

providing secure transactions between users; the function

[88]

[89]

32

SEC_MATCHMARKETS(), providing secure matching markets; the function
SEC_COMBOPTY(), providing secure combinatorial optimizations such as,
but not limited to, integer programming, linear programming and simplex op-
timization; and combinations thereof.

A number of implementations of the present disclosure have been described.
Although the subject matter has been described in language specific to the structural
features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above, and that various modifications may be made without departing from
the spirit and scope of the present disclosure. Rather, the specific features or acts
described above are disclosed as example forms of implementing the claims, and other
implementations are within the scope of the following claims.

I have therefore described an implementation of a practical secure spreadsheet
system, which makes the techniques from the field of Secure Multi-Party Computation
accessible to users with no previous knowledge of cryptography and with little to none
modifications to their existing spreadsheets. The system is also ready to work on cloud
computing systems, securely outsourcing complex calculations of high economic value

to remote servers.

[Claim 1]

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

33

Claims

A user programmable secure spreadsheet calculation system,
comprising:
- a spreadsheet module configured to process user data in one or
more spreadsheet files, said user data comprising user values,
user variables and/or user formulas, user variables and/or user
formulas,
- a secure parser module configured to
- obtain said user data from said spreadsheet module and to
- generate a secure program with at least one secure com-
putation protocol using the obtained user data so as to allow
computation of a least one encrypted user spreadsheet
result, and
- a secure cryptographic calculation module configured to
- receive said secure program from said secure parser
module, and to
- compute said at least one encrypted user spreadsheet
result by executing said secure program.
The system according to claim 1, wherein said secure cryptographic
calculation module is additionally configured to transmit the at least
one encrypted user spreadsheet result to said secure parser module and
said secure parser module is additionally configured to decrypt the
received at least one encrypted user spreadsheet result and to provide
said decrypted user spreadsheet result to said spreadsheet module.
The system according to one of the preceding claims, wherein the
spreadsheet module and the secure parser module are comprised in a
local computing device and the secure cryptographic calculation
module is comprised in a remote computing device, connected with
said local computing device.
The system according to one of the preceding claims, wherein said
secure computation protocol comprises at least one privacy-preserving
protocol from a group of privacy-preserving protocols consisting of:
garbled circuits and oblivious transfers, secret sharing, homomorphic
encryption, oblivious random access machines (ORAM), and com-
binations thereof.
The system according to one of the preceding claims, wherein said

secure cryptographic calculation module is further configured to obtain

[Claim 6]

[Claim 7]

[Claim 8]

[Claim 9]

[Claim 10]

[Claim 11]

[Claim 12]

[Claim 13]

34

third-party values, variables and/or formulas from a directory of
encrypted third-party values, variables and/or formulas and said secure
cryptographic calculation module is configured to compute the at least
one encrypted user spreadsheet result by executing the secure program
using said third-party values, variables and/or formulas.

The system according to one of the preceding claims, wherein said
secure cryptographic calculation module is configured for secure
function evaluations or for private function evaluations.

The system according to one of the preceding claims, wherein the
spreadsheet module is further configured to process said one or more
spreadsheet files by at least one of following: a digital time-stamping
module; and a digital signing module; and an indexer module of a
public registry of spreadsheet files; and combinations thereof.

The system according to one of the preceding claims, further
comprising: a catalogue module of secure functions configured to
obtain secure programs associated with functions that are configured to
generate results based on one or more user data associated with at least
one of or more of a secure searcher; a secure indexer; a secure
exchange; a secure auction; a secure settlement system; a secure
clearing house; a secure transaction system; a secure matching market;
a secure combinatorial optimizer; and combinations thereof.

The system according to one of the preceding claims, further
comprising: a key generation and distribution module, for generating at
least one set of public and private keys and distributing said keys to at
least one of the modules of the system.

The system according to one of the preceding claims, further
comprising: an accelerator module to speed-up the secure cryp-
tographic calculation module; and a ciphering module to increase the
security of the secure cryptographic calculation module.

The system according to one of the preceding claims, further
comprising: an interactive assistant module to suggest re-arrangements
of the formulas to the user.

The system according to one of the preceding claims, wherein said
secure parser module is furthermore configured to interpret multidi-
mensional expression languages and data analysis expressions.

A computer-readable medium including contents stored thereon which,
when executed by the one or more computers, cause the one or more

computers to perform secure spreadsheet calculations, comprising:

35

- acquiring user data from a spreadsheet module; and
- parsing to interpret said acquired user data; and generating a
secure program with at least one secure computation protocol
using the acquired user data so as to allow computation of at least
one encrypted user spreadsheet result; and transmitting said
secure program; and
- receiving said secure program; and computing said at least one
encrypted user spreadsheet result by executing said secure
program.
[Claim 14] A computer implemented method of secure spreadsheet calculation,
comprising:
- acquiring user data from a spreadsheet module; and
- parsing to interpret said acquired user data; and generating a
secure program with at least one secure computation protocol
using the acquired user data so as to allow computation of at least
one encrypted user spreadsheet result; and transmitting said
secure program; and
- receiving said secure program; and computing said at least one
encrypted user spreadsheet result by executing said secure
program.
[Claim 15] Secure parser module for use in a user programmable secure
spreadsheet calculation system, configured to:
- obtain user data comprising user values, user variables and/or
user formulas from a spreadsheet module, and to
- generate a secure program with at least one secure computation
protocol using the obtained user data so as to allow computation
of at least one encrypted user spreadsheet result by a secure cryp-
tographic calculation module
[Claim 16] Secure cryptographic calculation module for use in a user pro-
grammable secure spreadsheet calculation system, configured to:
- receive a secure program from a secure parser module, and to
- compute at least one encrypted user spreadsheet result by

executing said secure program

36

Abstract

Systems, computer-readable media and methods for enabling secure computation on
spreadsheet software. A secure spreadsheet is implemented as an add-in to an existing
spreadsheet program, or as a new spreadsheet program/web application, to allow secure com-
putations on private input data (and also optionally with private functions) without the parties
learning anything about them, via the familiar spreadsheet interface and its formula language.
Automatic conversion of previous spreadsheet data and formulas is provided whenever possible,
or assisted via a helper. The secure computation can be executed between the computers of the
involved parties, or outsourced to a third-party -cloud computing system (FIG. 4)-: the secure
cryptographic calculation module automatically optimizes for the best performing technique of
secure computation (for example, homomorphic encryption, garbled circuits, oblivious transfers,
secret sharing, oblivious random access machines and/or a combination of the previous crypto-

primitives).

1/5

[Fig. 1]

Figure 1
— B = B —

800

2/5

300

& e k1
I R H
X ; ¢
. v

5T e

SN

’z‘
%
2

o3

g T

(<}

el
L] 3 4 : - m
o3 m o £ : .
5 | o : “
i
, P
H
P &
H - 3
Srrin T v
e & ©
H
H
¥
o
<
bt
*
/\
159
&5
£

3/5

BRI

Figure 6

[Fig. 5]

H H
H H 4 @
3 : m n)m
o5 Fon
o~ o
o
] %
o 7
&
Il
{
'
!
~
o
53]
s
I :
o
: 5
§]
m g g
¢ \O
- o)
i
d

4/5

[Fig. 7]

FE o,

e
e

B s § 3 ; Executs MORY

NP UT INPUT | OUPUT BCHEDMAS
VALUE B1 | VALUE C1 - =HALB1LC1) -
VALUE B2 | VALUE C2 . =g{A2,B2,03}
{ VALUE B3 | VALUE C3 | =h{A3,B3.03)
, || VALUE B4 | VALUECA | =i{A4B4C4) .. os
i Total | =i{E1,E2,E3 B4} S

H i
: : ! !

%.“ ..V)A J’@

706 707 i %
205 704

wasenahes

FeEne sxeeution

{ B oanis s

mRggregstion Linctions
Sl

o,

5/5

[Fig. 9]

200

rrrrrrrrrrrrrrrrrry

%
%

AbaAk

|

T

o

puizrsrshsrsrssea,

209

e

|
J

/

o
=3
Lol

Figure 9

S~ S|

,

SO

,/““*L“L““‘N

