[0001]

[0002]

[0003]

[0004]

[0005]

Description
Title of Invention: CRYPTOGRAPHICALLY SECURE

FINANCIAL INSTRUMENTS
Technical Field

This invention relates to financial instruments and more particularly to systems and
methods to provide financial instruments enhanced with secure computation.
Background Art

The trading of numerous financial instruments give rise to financial markets, said
financial instruments featuring an indefinite amount of terms. A common feature to
any of them is the importance of some common terms for their definition: dates, prices,
involved parties, current valuation and other parameters. Customarily, said data has
always been publicly shared: terms of the contracts between the participating parties
have to been known between them, and ultimately to the markets if said financial in-
struments are publicly traded. Even taking into consideration that one party is perfectly
able to use his own private sources of information to trade and value financial in-
struments, the restriction to mostly rely on publicly accessible information creates deep
market imperfections: that is, the lack of publicly accessible sources of commercial
and secret information obstructs the correction of market imperfections, increasing
valuations and risks.

Advantageously, the latest advances in cryptography enabling the computation with
data and computer code in a secure way, without any of the parties learning anything
but the result of the computation, can be used within the field of finance to improve the
availability, quality and quantity of the information used to price and trade financial in-
struments: exemplarily, secret datasets of information collected by third-parties could
be used to price financial instruments; better estimations of financial risk could be
calculated using said secrets datasets, ultimately reducing risk; secret functions
provided by third-parties could be used to value financial instruments and indices,
without disclosing said secret functions; and guarantees could be provided in the form
of mathematical proofs that secure computation programs conform to specifications
and/or restrictions, a feature of great importance specially when secure computation
programs are in encrypted form and the financial instruments are given to third parties
that may not trust it.

It is therefore an object of the present disclosure to provide financial instruments

enhanced with secure computation.
Summary of Invention

The object is solved by a financial instrument, a computer implemented method and

[0006]

[0007]

[0008]

[0009]

a financial instrument management system to carry out secure computation on
financial instruments according to the present claims.

The basic idea of the present disclosure is to enhance financial instruments with
secure computation, in their multiple forms: on an original, unmodified financial in-
strument; on a converted financial instrument from an unmodified financial instrument,
said conversion encrypting some of the values of its fields; on an aggregate financial
instrument created from unmodified and modified financial instruments; on a modified
financial instrument including a proof-certified secure computation program; and on a
modified financial instrument including a proof-certified encrypted secure computation
program. All these innovative variations on financial instruments are provided by a
financial instrument management system in which a secure processing module obtains,
keeps and checks the correctness of financial instruments and a secure cryptographic
module that encrypts and decrypts terms and/or values of financial instruments and
executes one or more secure computation programs on said financial instruments using
at least one privacy-preserving protocol. Financial instruments are the perfect field in
which to apply secure computation techniques due to the reason that the number of
terms and/or values that define them is very small in relation to their high economic
value, justifying the much higher costs of computing with secure computation
techniques; that is, apart from the traditional demands from finance of secrecy and
privacy. This basic idea can be further extended: proof-certified secure computation
programs also provide guarantees in the form of mathematical proofs over said secure
computation programs, regarding their termination, conformance to specifications and
in general their well-behaviour; this feature is of paramount importance in assuring
trust to third parties whenever financial instruments are transferred to them, especially
when said secure computation programs are in encrypted form and they have to blindly
execute them.

In the interest of clarity, several terms which follow are specifically defined for use
herein. The term “financial instrument” is used herein to refer to any contract that
gives rise to a financial asset of one entity and a financial liability or equity instrument
of another entity. Examples of financial instruments are as follows, but not limited to
this list: bonds, loans, futures, options, swaps, caps, floors, forwards, commercial
papers, bills, deposits, stock and derivatives, among others.

The term “secure computation program” is used herein to refer to any program that
comprises executable code and encrypted information using modern cryptographic
techniques to securely compute on data and computer code. The terms 'secure com-
putation program' and 'secure program' can be used interchangeably herein.

The term “proof-certified secure computation program” is used herein to refer to any

secure computation program accompanied with at least one mathematical proof. Said

[0010]

[0011]

[0012]

[0013]

[0014]

[0015]
[0016]

[0017]

[0018]

proof could be about any property of the secure computation program, such as correct
termination; conformance of the secure computation program to a specification; and
proofs assuring that some pre-conditions, post-conditions and invariants will be
maintained; among other purposes of said proofs.

The term “encrypted secure computation program’ is used herein to refer to any
secure computation program whose code is encrypted in a cryptographically secure
way.

The term “privacy-preserving protocol” is used herein to refer to any cryptographic
protocol and/or technique that allows computation on encrypted data, comprising:
garbled circuits and oblivious transfers, GMW circuits, secret sharing, homomorphic
encryption, oblivious random access machines (ORAMs), and combinations thereof. It
can also be used interchangeably to refer to any cryptographic protocol and/or
technique that allows computation with encrypted code, comprising: reusable garbled
circuits, circuits over secret sharing schemes, circuits over homomorphic encryption
schemes, cryptographically-secure obfuscation, and combinations thereof.

The term “terms and/or values of financial instruments” is used herein to refer to any
property, explicit or implicit, of a financial instrument such as dates, numerical values
such as prices and non-numerical ones, involved parties, trading venue, type of in-
strument, method of calculation and, in general, any other parameter of said financial
instrument.

The term “fields of financial instruments” is used herein to refer to any named
reference, explicit or implicit, to the terms and/or values of a financial instrument. The
terms 'fields' and ‘tags' can be used interchangeably herein.

The term “and/or” is used herein to mean both “and” as well as “or”. For example,
“A and/or B” is construed to mean A, B or A and B.

By 'module’ as a term is used herein, it may include hardware and/or software.

According to the present disclosure, a financial instrument having at least a value de-
termined by the result of at least a secure computation program executed on at least
one computer device. According to this embodiment, the main advantage is that the
secure computation techniques described in the present disclosure can be applied to
any financial instrument, with no modifications.

According to another embodiment, said financial instrument is converted from a
financial instrument with no value determined by the result of at least a secure com-
putation program executed on at least one computer device to a financial instrument
with at least one encrypted term or value. The main benefit of this embodiment is that
conventional financial instruments are transformed and updated to be used with the
disclosed management system for financial instruments.

According to a further embodiment, said financial instrument is aggregated from

[0019]

[0020]

[0021]

financial instruments with no value determined by the result of at least a secure com-
putation program executed on at least one computer device; and/or financial in-
struments with at least one encrypted term and/or value. The main benefit of this em-
bodiment is that an aggregate financial instrument can be created, respecting the
secrecy and privacy of data contained on the financial instruments that are being ag-
gregated: said aggregate financial instruments would be of great utility to devise new
ways to package financial instruments.

According to a further embodiment, said financial instrument contains a proof-
certified secure computation program. The main advantage of this embodiment is that
secure computation programs reside within the financial instruments, so they can be
transferred and executed by third parties. Another advantage is that said secure com-
putation programs are accompanied by mathematical proofs of any property that can be
possibly proved about them, improving the safety and trustworthiness of said financial
instruments when transferred to third parties.

According to a further preferred embodiment, said financial instrument contains an
encrypted proof-certified secure computation program. The main advantage of this em-
bodiment is that secure computation programs support the most modern cryptographic
techniques regarding encrypted computation, so the executing party of said secure
computation program could not learn anything substantial about it; however, the math-
ematical proofs accompanying said encrypted secure computation program certify its
well-behaviour.

According to a further embodiment, a computer implemented method for securely
computing one or more financial instruments, the method comprising at least one or
more of: encrypting and/or decrypting terms and/or values of said financial in-
struments; and executing one or more secure computation programs on said financial
instruments using at least one privacy-preserving protocol from a group of privacy-
preserving protocols consisting of: garbled circuits and oblivious transfers, GMW
circuits, secret sharing, homomorphic encryption, oblivious random access machines
(ORAMs), and combinations thereof; garbled circuits and oblivious transfer being the
preferred one. According to this embodiment, one of its main advantages is the variety
of supported cryptographic techniques, combining different security models with the
shortcomings of some cryptographic techniques resolved by the benefits of others.
Details of the protocols and cryptographic techniques can be found in the papers cited
herein and in the following books [Manoj M. Prabhakaran; Amit Sahai. ‘Secure Multi-
Party Computation'. IOS Press, 2013. ISBN 978-1-61499-168-7; Thomas Schneider.
‘Engineering Secure Two-Party Computation Protocols'. Springer, 2012. ISBN
978-3-642-30041-7; Carmit Hazay; Yehuda Lindell. 'Efficient Secure Two-Party
Protocols'. Springer, 2010. ISBN 978-3-642-14302-1]. Garbled circuits and oblivious

[0022]

[0023]

[0024]

transfer are preferably used for secure computations between two parties, and secret
sharing between 3 or more parties; ORAMs are particularly suitable for secure com-
putation on large arrays of encrypted data; and homomorphic encryption can only be
used for small quantities of data such as prices, given its high computational costs.

According to a further embodiment, said computer implemented method for securely
computing one or more financial instruments further comprising at least one or more
of: rewriting fields, terms and/or values of financial instruments; and generating secure
computation programs; and customising existing secure computation programs; and
signing secure computation programs; and including secure computation programs
within said financial instruments. According to this embodiment, one of its advantages
is that conventional financial instruments can be converted to financial instruments
ready for secure computation, that is, with some fields encrypted and/or containing
secure computation programs. Another advantage is that secure computation programs
can be included within said financial instruments during the conversion, said secure
computation programs specially tailored to the converted financial instruments.

According to a further embodiment, said computer implemented method for securely
computing one or more financial instruments further comprising at least one or more
of: creating an aggregate financial instrument; and generating secure computation
programs; and customising existing secure computation programs; and signing secure
computation programs; and including secure computation programs within said
financial instruments. According to this embodiment, one of its advantages is that
aggregate financial instruments can be created from collections of other financial in-
struments, given rise to new ways of packaging financial instruments respecting the
secrecy and privacy of the financial instruments that are being aggregated. Another
advantage is that secure computation programs can be included within said aggregate
financial instruments during the aggregation process, said secure computation program
specially tailored to the converted financial instruments.

According to a further embodiment, said computer implemented method for securely
computing one or more financial instruments further comprising at least one or more
of: obtaining existing proofs of secure computation programs; and generating proofs of
secure computation programs; and including proofs of secure computation programs
within said financial instruments; and validating proofs of secure computation
programs; and generating proof-certified secure computation programs; and cus-
tomising existing proof-certified secure computation programs; and signing proof-
certified secure computation programs; and including proof-certified secure com-
putation programs within said financial instruments. According to this embodiment, its
main advantage is that secure computation programs are complemented with proofs,

which can be obtained from a library of pre-defined proofs, automatically generated

[0025]

[0026]

and/or later validated before or during the execution of secure computation programs.
Another advantage is that secure computation programs can be included within said
proof-certified financial instruments during the proof generation process, said secure
computation programs specially tailored to the specifications of the proofs demanded
by a particular financial instrument.

According to a further preferred embodiment, said computer implemented method
for securely computing one or more financial instruments further comprising at least
one or more of: obtaining existing proofs of encrypted secure computation programs;
and generating proofs of encrypted secure computation programs; and including proofs
of encrypted secure computation programs within said financial instruments; and
validating proofs of encrypted secure computation programs; and using privacy-
preserving protocols for encrypted secure computation programs: reusable garbled
circuits, circuits over secret sharing schemes, circuits over homomorphic encryption
schemes, cryptographically-secure obfuscation, and combinations thereof; and
generating encrypted proof-certified secure computation programs; and customising
existing encrypted proof-certified secure computation programs; and signing encrypted
proof-certified secure computation programs; and including encrypted proof-certified
secure computation programs within said financial instruments. According to this em-
bodiment, one advantage is that secure computation programs are complemented with
proofs, which can be obtained from a library of pre-defined proofs, automatically
generated and/or later validated before or during the execution of secure computation
programs. The main benefit is the variety of supported cryptographic techniques for
encrypted secure computation, combining different security models with the
shortcomings of some cryptographic techniques resolved by the benefits of others: that
is, these cryptographic techniques allow to store secure computation programs within
the financial instruments in an encrypted state, so that the parties executing the
programs do not learn anything substantial about the executed code under different as-
sumptions and security models.

According to a further embodiment, a financial instrument management system
executed on at least one computer device, comprising a secure processing module
configured to obtain one or more financial instruments, and to check the correctness of
said obtained financial instruments, and to keep the financial instruments resulting
from the secure cryptographic module; and a secure cryptographic module configured
to receive said financial instruments from said secure processing module, and to
encrypt and/or decrypt terms and/or values of said financial instruments, and to
execute one or more secure computation programs on said financial instruments using
at least one privacy-preserving protocol from a group of privacy-preserving protocols

consisting of: garbled circuits and oblivious transfers, GMW circuits, secret sharing,

[0027]

[0028]

[0029]

homomorphic encryption, oblivious random access machines (ORAMs), and com-
binations thereof; garbled circuits and oblivious transfer being the preferred one.
According to this embodiment, one advantage is that the secure processing module
manages the financial instruments and check their correctness: these capabilities are
separated from the cryptographic ones, to reduce the trusted codebase and prevent
security risks. According to this embodiment, another advantage is that all the cryp-
tographic capabilities are on the same module, therefore the execution of secure com-
putation programs can work together with the encryption and decryption of terms of
values of the financial instruments.

According to a further embodiment, said financial instrument management system
wherein said secure processing module is additionally configured to rewrite fields,
terms and/or values of financial instruments, and wherein the secure cryptographic
module is additionally configured to at least one or more of: generate secure com-
putation programs; and customise existing secure computation programs; and sign
secure computation programs; and include secure computation programs within said
financial instruments. According to this embodiment, one advantage is that rewriting
financial instruments is separated from the creation and inclusion of secure com-
putation programs. Another advantage is that conventional financial instruments are
rewritten changing the names of the fields, so they could still be retro-compatible with
software that is not aware of the techniques used in the present disclosure.

According to a further embodiment, said financial instrument management system
wherein the secure processing module is additionally configured to create an aggregate
financial instrument and wherein the secure cryptographic module is additionally
configured to at least one or more of: generate secure computation programs; and
customise existing secure computation programs; and sign secure computation
programs; and include secure computation programs within said financial instruments.
According to this embodiment, one advantage is that the creation of aggregate
financial instruments is separated from the creation and inclusion of secure com-
putation programs. Another advantage is that conventional financial instruments can be
aggregated with financial instruments ready for secure computation, with no dis-
tinctions between them.

According to a further embodiment, said financial instrument management system
wherein the secure cryptographic module is additionally configured to at least one or
more of: obtain existing proofs of secure computation programs; and generate proofs
of secure computation programs; and include proofs of secure computation programs
within said financial instruments; and validate proofs of secure computation programs;
and generate proof-certified secure computation programs; and customise existing

proof-certified secure computation programs; and sign proof-certified secure com-

[0030]

[0031]

[0032]

putation programs; and include proof-certified secure computation programs within
said financial instruments. According to this embodiment, the main advantage is that
the generation and inclusion of proofs go together with the creation and inclusion of
secure computation programs: shorter and faster proofs can be tailored to the given
secure computation programs, and vice versa; and proofs can be validated during the
execution of secure computation programs.

According to a further preferred embodiment, said financial instrument management
system wherein the secure cryptographic module is additionally configured to at least
one or more of: obtain existing proofs of encrypted secure computation programs; and
generate proofs of encrypted secure computation programs; and include proofs of
encrypted secure computation programs within said financial instruments; and validate
proofs of encrypted secure computation programs; and use privacy-preserving
protocols for encrypted secure computation programs: reusable garbled circuits,
circuits over secret sharing schemes, circuits over homomorphic encryption schemes,
cryptographically-secure obfuscation, and combinations thereof; and generate
encrypted proof-certified secure computation programs; and customise existing
encrypted proof-certified secure computation programs; and sign encrypted proof-
certified secure computation programs; and include encrypted proof-certified secure
computation programs within said financial instruments. According to this em-
bodiment, the main advantage is that techniques for encrypted secure computation are
supported together with proofs, thus proofs can be validated during the execution of
encrypted secure computation programs, even if they executing party does not really
know what is being executed.

According to a further preferred embodiment, said financial instrument management
system is implemented as an add-in to an existing spreadsheet computer program, said
add-in comprising at least the secure processing module; or as an entirely new
spreadsheet computer program; or as a web application. In an exemplary embodiment,
the present disclosure is implemented as an add-in to Microsoft® Excel®: according to
this embodiment, its main advantage is that financial instruments enhanced with secure
computation are presented to the user in a well-known GUI that can be easily extended
and complemented with other financial instruments and financial systems of the user.

The present disclosure has been summarily described in the preceding paragraphs: it
relates to financial instruments, and in particular it relates to systems and methods and
financial instruments enhanced to securely compute on the information contained
within said financial instruments and on other external data sources; the secrecy and
privacy of secure computation programs may also be guaranteed. Secure computation
over private data enables to calculate and mine datasets preserving the privacy of their

data, providing secure property rights for data and secure computation programs. In the

[0033]

[0034]

[0035]

[0036]

[0037]

[0038]

present disclosure, these advanced data processing features are incorporated onto
financial instruments, improving the state of the art of finance by offering better
financial instruments to lower risks and improve their yields, due to the combination of
one or more of the following factors: use of secret datasets; use of secret functions and
secure computation programs for valuations and/or trading strategies, among other
possible uses; providing guarantees in the form of mathematical proofs accompanying
said financial instruments regarding valuable properties about them (vg. that they
follow some specifications and/or restrictions); and aggregating collections of financial
instruments under a newly encrypted one as a novel way to package financial in-
struments. And regarding the field of secure computation, the present disclosure
improves the current state of the art by introducing automated theorem provers and the
rigor of mathematical proofs to secure computation programs, providing novel and
inventive uses such as encrypted secure computation programs that can be executed on
private datasets without exactly knowing what the secure computation program would
do but with assurances that the execution will be well-behaved. Other financial in-
struments, methods, systems, modules, media and/or computer program products
according to embodiments of the present disclosure will be or become apparent to one
with skill in the art upon review of the following drawings and detailed description. It
is intended that all such additional financial instruments, systems, modules, methods,
media and/or computer program products be included within this description, be within
the scope of the present disclosure, and be protected by the accompanying claims.
Brief Description of Drawings

The above and other objects, features and advantages of the present disclosure will
become apparent from the following description of embodiments, in which:
Fig.1
[fig.1] Flow diagram of the secure computation of a financial instrument.
Fig.2
[fig.2] Flow diagram of the automatic conversion from a conventional financial in-
strument to a financial instrument ready for secure computation.
Fig.3
[fig.3] Flow diagram of the automatic aggregation of conventional financial in-
struments and/or financial instruments ready for secure computation.
Fig4
[fig.4] Flow diagram of the load and use of financial instruments ready for secure com-
putation from a spreadsheet enabled for secure computation.
Fig.5

[fig.5] is a non-limiting exemplary schematic diagram of a computer system that

[0039]

[0040]

[0041]

[0042]

10

executes secure computation on financial instruments.

Fig.6

[fig.6] is a flow diagram of the generation of Proof-Certified Circuits.

Description of Embodiments

The inventive subject matter is described with specificity to meet statutory re-
quirements. However, the description itself is not intended to limit the scope of this
patent. Rather, it is contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or combinations of steps similar to
the ones described in this document, in conjunction with other present or future tech-
nologies.

Details of the cryptographic protocols, primitives and techniques used in the present
disclosure can be found in the papers cited herein and in the following books [Manoj
M. Prabhakaran; Amit Sahai. ‘Secure Multi-Party Computation'. IOS Press, 2013.
ISBN 978-1-61499-168-7; Thomas Schneider. 'Engineering Secure Two-Party Com-
putation Protocols'. Springer, 2012. ISBN 978-3-642-30041-7; Carmit Hazay; Yehuda
Lindell. ‘Efficient Secure Two-Party Protocols'. Springer, 2010. ISBN
978-3-642-14302-1]. Further details of the cryptographic protocols, primitives and
techniques used in the present disclosure appear in the following publications, the
contents of which are incorporated herein by way of reference:

. Oblivious Transfer: in some example, Oblivious Transfer (OT) of [-bit strings
is a secure computation protocol [M. Naor and B. Pinkas. “Efficient oblivious
transfer protocols”. ACM-SIAM SODA’01, pages 448—457], in which the
chooser inputs a vector of choice bits r and the server inputs a vector of pairs
of [-bit strings (x 4,x ;) ;, i=1...n . At the end of the protocol, the chooser
learns the selected strings (x ,) ;, ibut nothing about the other strings x ;, ;, i
whereas the sender learns nothing about the choices r ;.

. Yao’s Garbled Circuit Protocol: in some examples, Yao’s garbled circuit
protocol is a secure computation that given a function fto be securely
evaluated (SFE) represented as a boolean circuit [A. C. Yao. “How to
generate and exchange secrets”. FOCS’86, pages 162—-167] allows two
parties, a garbler and an evaluator, its jointly computation on their respective
private inputs X and Y: for each wire of the boolean circuit of f, the garbler
chooses two random wire labels for the values 0 and 1. Then, the garbler
obliviously sends the wire labels to the evaluator for their inputs, using an
oblivious transfer protocol in the case of the evaluator’s inputs so that the
garbler does not learn the evaluator’s inputs. The garbler also creates and

sends to the evaluator a garbled Table T'; for each gate G ; of f so that given

11

the wire labels for G ; ’s inputs, T ;only allows to recover the wire label of the
corresponding output of G ;. Using the received garbled tables and wire labels
of the inputs, the evaluator proceeds to evaluate the garbled circuit gate by
gate until it obtains the labels of the output wires: for these, the garbler sends
mappings of their plain values to the evaluator to recover the desired
computed f{x,y). Note that in Secure Function Evaluation (SFE), the function
is known by both parties (garbler and evaluator): in case it’s desired that the
function remains private (PF-SFE, Private Function-Secure Function
Evaluation), a Universal Circuit capable of simulating any circuit given the
description of function f could be used, in such a way that the secure
evaluation of the Universal Circuit completely hides the functionality of f,
including its topology. Multiple garbled circuit optimizations to improve the
performance have been devised over the years, the following ones being the
most notable: Point-and-Permute [M. Naor, B. Pinkas, and R. Sumner.
“Privacy preserving auctions and mechanism design”. ACM Conference on
Electronic Commerce, pages 129-139. ACM, 1999], Free-XOR [V.
Kolesnikov and T. Schneider. “Improved garbled circuit: Free XOR gates and
applications”. ICALP’08, volume 5126 of LNCS, pages 486—498], Garbled
Row Reductions [B. Pinkas, T. Schneider, Nigel P. Smart, and Stephen C.
Williams. “Secure two-party computation is practical”’. ASTACRYPT 2009,
volume 5912 of LNCS, pages 250-267], Fixed-key with AES-NI [M. Bellare,
V. Hoang, S. Keelveedhi, and P. Rogaway. “Efficient garbling from a fixed-
key block cipher”. IEEE Symposium of Security and Privacy, pages 478492,
2013] and Half-Gates [S. Zahur, M. Rosulek, D. Evans. “Two Halves Make a
Whole — Reducing Data Transfer in Garbled Circuits Using Half Gates”.
EUROCRYPT 2015, pages 220-250]. Yao’s garbled circuits and oblivious
transfers are the default and preferred techniques for secure computation.
GMW Protocol: in some examples, the Goldreich-Micali-Wigderson protocol
is a secure computation protocol in which given a function f to be securely
evaluated (SFE) represented as a Boolean circuit consisting of XOR and AND
gates [O. Goldreich, S. Micali, and A. Wigderson. “How to play any mental
game, or a completeness theorem for protocols with honest majority”. 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 218-229]
it allows n-parties to jointly compute said function respecting the privacy of
their inputs: it’s considered the n-party case of the previously described Yao’s
Garbled Circuit Protocol. The protocol starts setting shares on the input wires:
party P ; provides input s ,, on wire w by choosing random s ,; for j different

from i, setting its s ,;; =5 . XOR(XOR ;.; s ;) and sending s ,; to P ;. Then,

12

shares on internal wires are computed inductively: for XOR gates, each party
P ; computes s ,; =s ; XORs ,; , with w being the output wire and « and v being
the input wires; for AND gates, P ;chooses a random bit (¢ ;)! ¥} and
computes the four values of P ; ’s shares, (c;){ %}, (¢;)} ¥ IXORs ,;, c; t ¥}
XORs ,; XORs ,;, so that party P ; obtains the correct value (¢ ;) %} from P
by executing an oblivious transfer with P ;, and finally each party P ;
computes s ;= § 4 § i +24u(c ;)0 ¥). After all the internal wires have been
calculated, the final value s ,, of a sharing of an output wire w can be recon-
structed by privately pooling the private shares of all the parties.

Secret Sharing: in some examples, secret sharing refers to methods for dis-
tributing a secret amongst a group of parties, each of whom is allocated a
share of the secret; the secret can be reconstructed when only a sufficient
number of shares are combined together. More formally, [x] denotes the
secret-shared value x in ', among parties p ; ,...,p g such that any Ceil((B+qg
)/2) of those can recover the secret. Regarding basic operations, [x]+[y], [x]+c
and c[x] can be computed locally by each party p ; using her shares of x and y
while the computation [x][y] is mandatorily interactive for Ceil((B+1)/2)
parties. Details for the currently most efficient implementation of protocols
based on secret sharing, optimized with shared MACs and a preprocessing
offline phase that interchanges random data between the parties, can be found
in [Ivan Damgard; Marcel Keller; Enrique Larraia; Christian Miles; Nigel
Smart. Tmplementing AES via an actively/covertly secure dishonest-majority
MPC protocol' SCN 2012, volume 7485 of LNCS 7485, pages 241-263; Ivan
Damgard; Marcel Keller; Enrique Larraia; Valerio Pastro; Peter Scholl; Nigel
Smart. Practical Covertly Secure MPC for Dishonest Majority or: Breaking
the SPDZ Limits' ESORICS 2013, pp. 1-18; Ivan Damgard; Valerio Pastro;
Nigel Smart; Sarah Zakarias. 'Multiparty computation from Somewhat Ho-
momorphic Encryption' CRYPTO 2012, LNCS 7417, pp. 643-662; Marcel
Keller; Peter Scholl; Nigel Smart. 'An architecture for practical actively
secure MPC with dishonest majority’ Computer & Communications Security
2013, pp. 549-560].

Homomorphic Encryption: In some examples, homomorphic encryption refers
to methods of encryption allowing computations to be carried out on
encrypted data. More formally, with c=E 4 , (x) denoting the encryption of x
under the public key of party A producing encrypted data ¢ and D 4 (¢)
denoting the decryption of said encrypted data ¢, when using a fully ho-
momorphic encryption schemes the following relationships hold: D 4 ¢ (E 4

(X)+E 4 i ())=x+y for the sum operation and D 4y (E 4 i (C)OF 4 ¢ ())=x0y

13

for the multiplication operation; non-fully homomorphic encryption schemes
refer to the case when just one of the two previous relationships hold. In some
examples, homomorphic encryption can be extended with secret sharing: at
least a variable can be secret shared between the parties of a cryptographic
protocol using homomorphic encryption. Before the advent of Fully Ho-
momorphic Encryption, practical systems using non-fully homomorphic en-
cryption were of no utility: in [Pierre-Alain Fouque; Jacques Stern; Geert-Jan
Wackers. 'CryptoComputing with rationals', Proceedings of the 6th Inter-
national Conference on Financial Cryptography, pp 136-146, 2002], the
addition of two rational numbers was not possible and the multiplication can
only be done to a known integer. After the introduction of Fully Ho-
momorphic Encryption, it became possible to compute general functions but
with performance some orders of magnitude slower than those achieved by
the state of the art of secret sharing schemes or garbled circuits, although still
being more efficient on a round complexity perspective: details for their
efficient implementation and their tradeoffs with other schemes can be found
in [S. Myers, M. Sergi, and Abhi Shelat. "Threshold fully homomorphic en-
cryption and secure computation'. IJACR Cryptology ePrint Archive,
2011:454, 2011; Craig Gentry; Shai Halevi; Nigel Smart. 'Fully homomorphic
encryption with polylog overhead'. EUROCRYPT 2012, LNCS 7237, pp.
465-482; Gilad Asharov; Abshishek Jain; Adriana Lopez-Alt; Eran Tromer;
Vinod Vaikuntanathan; Daniel Wichs. 'Multiparty computation with low com-
munication, computation and interaction via threshold FHE'. EUROCRYPT
2012, LCNS 7237, pages 483-501; Ashish Choudhary; Emmanuela J. Orsini;
Arpitra Patra; Nigel Smart. 'Between a Rock and a Hard Place: Interpolating
Between MPC and FHE', Advances in Cryptology - ASIACRYPT 2013,
LNCS 8270, pp. 221-240]. To allow that encrypted data could be used under
multiple public/private keys, various approaches can be considered. In one
implementation, proxy re-encryption techniques are implemented [Matt
Blaze, Gerrit Bleumer, Martin Strauss. “Divertible protocols and atomic proxy
cryptography”. EUROCRYPT 1998, LNCS 1403, pages 127-144, 1998;
Qingji Zheng, Xinwen Zhang. “Multiparty Cloud Computation”. CoRR abs/
1206.3717, 2012; Bharath K. Samanthula, Gerry Howser, Yousef Elmehdwi,
Sanjay Madria. “An efficient and secure data sharing framework using ho-
momorphic encryption in the cloud”. Proceedings of the First International
Workshop on Cloud Intelligence, Article No 8, 2012]: these techniques allow
the re-encryption under a new and more general proxy re-encryption key of

the encrypted data which was previously encrypted under the key of just one

14

user. In another implementation, secure distributed key generation techniques
[Ian Goldberg. “Distributed Key Generation in the Wild”. Cryptology ePrint
Archive 2012/377, July 2012] are used, which allow the creation of common
public/private keys between a set of users/clients. In another implementation,
multikey fully homomorphic encryption is used to evaluate any circuit on
encrypted data that might be encrypted under different public keys [Adriana
Lopez-Alt, Eran Tromer, Vinod Vaikuntanathan. “On-the-fly multi-party
computation on the cloud via multi-key fully homomorphic encryption”. Pro-
ceedings of the Symposium on Theory of Computing 2012, pages
1219-1234]. Circuits can also be evaluated with homomorphic encryption, as
the following papers show [Vladimir Kolesnikov, Ahmad-Reza Sadeghi,
Thomas Schneider. “How to Combine Homomorphic Encryption and Garbled
Circuits”. 1+ International Workshop on Signal Processing in the EncryptED
Domain, SPEED’09; Craig Gentry, Shai Halevi, Nigel P. Smart.
“Homomorphic Encryption of the AES Circuit”. CRYPTO 2012, LNCS 7417,
pages 850-867].

ORAM: in some examples, Oblivious Random Access Machines refers to
methods of hiding access patterns to a server storing encrypted information.
More formally, input y of the client is a sequence of data items denoted by ((v
1.X71),--(Va,X,)), and a sequence of read operations to retrieve the data of
the item indexed at a position and write operations to set the value of an index
position; the access pattern A(y) is the sequence of accesses to the server
storage system, containing both the indices accessed in the system and the
data items read or written; an oblivious RAM system is considered secure if
for any two inputs y,y" of the client, of equal length, the access patterns A(y)
and A(y') are computationally indistinguishable for anyone but the client. In
some implementations of ORAMs, techniques are used such as oblivious
sorting algorithms and cuckoo hashing to map each item to two potential
entries of a hash table. ORAMs exhibit significant speed-ups in comparison to
the shortcomings of the circuit approach for Secure Computation because
there are functions that are less efficient when implemented as a circuit of
possibly very wide breadth and depth, as in the case of accessing an array for
just one position, which has constant complexity in the ORAM model but
linear complexity inherent in the circuit model. Details for the currently most
efficient implementations based on ORAMs appear in [Craig Gentry, Kenny
A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, Daniel Wichs.
‘Optimizing ORAM and Using It Efficiently for Secure Computation'. Privacy
Enhancing Technologies 2013, pp. 1-18; Xiao Shaun Wang, T.-H. Hubert

15

Chan, Elaine Shi. 'Circuit ORAM: On Tightness of the Goldreich-Ostrovsky
Lower Bound'. Cryptology ePrint Archive: Report 2014/672] and details
regarding the practical compilation of programs to the ORAM-model of
secure computation can be found in [Chang Liu, Yan Huang, Elaine Shi,
Jonathan Katz, Michael Hicks. “Automating Efficient RAM-Model Secure
Computation”. IEEE Symposium on Security and Privacy 2014, pages
623-638].

Cryptographically-Secure Obfuscation: An obfuscator O is an probabilistic
compiler that takes a circuit C, or a program P, and produces a new inin-
telligible version O(C), or O(P): such a general definition is impossible, so a
weaker form has to be used, indistinguishability obfuscation, albeit crypto-
graphically-secure. In some examples, an indistinguishability obfuscator iO
for a class of circuits C, or a program P, ensures that given any two equivalent
circuits C ; and C ; contained in C, the two distributions iO(C ;) and iO(C)
are indistinguishable. In [Sanjam Garg, Craig Gentry, Shai Halevi, Mariana
Raykova, Amit Sahai, Brent Waters. “Candidate Indistinguishability Ob-
fuscation and Functional Encryption for all circuits”. FOCS 2013, pages
40-49] is offered an O for all circuits: it starts with an iO for polynomial-size
and log-depth circuits transforming them into branching programs using
Barrington’s theorem, which is evaluated between two parties using an OT
protocol; and combining the previous obfuscator with a fully homomorphic
encryption scheme, it manages to obtain indistinguishability between the
circuits. Another important cryptographic primitive to build crypto-
graphically-secure obfuscation in conjunction with Fully Homomorphic En-
cryption is the cryptographic multi-linear map: to be deemed convenient for
cryptographic applications, a cryptographic multi-linear map scheme consists
of efficient procedures for instance-generation, element-encoding validation,
group-operation and negation; security comes from the discrete logarithm
being hard in the respective groups, and usually the multi-linear Decision
Diffie Hellman should also be hard. Candidate constructions for multi-linear
maps appear in [Sanjam Garg, Craig Gentry, Shai Halevi. “Candidate Mul-
tilinear Maps from Ideal Lattices”. Eurocrypt 2013, pages 1-17; Jean-
Sébastien Coron, Tancrede Lepoint, Mehdi Tibouchi. “Practical multilinear
maps over the integers”. Crypto 2013, pages 476-493; Craig Gentry, Sergey
Gorbunov, Shai Halevi. “Graph-induced multilinear maps from lattices”.
Theory of Cryptography 2015, pages 498-527]. A cryptographic multi-linear
map is defined by: for k+1/ cyclic groups G ;,...,G x,G 7 of the same order p,

an k-multi-linear map e:G ; x...xG —G 7 has the following properties:

[0043]

[0044]

[0045]

[0046]

16

. For elements {g ;in G; }i_; x index i in [k] and integer a in Z,, it
holds thate(g ; ,...,08g ;,....g)=08e(g ; ,....2 ¢).

. The map e is non-degenerate in the following sense: if the elements {
g.in G, }i,. x are all generators of their respective groups, then e(g

7.8 1) 18 a generator of G ;.

The parameters of the system, cryptographic protocols and primitives are determined
based on formulas as the ones included in the following papers [T. Kleinjung, Arjen K.
Lenstra, D. Page, Nigel P. Smart. "Using the Cloud to Determine Key Strengths".
TACR Cryptology ePrint Archive, 2011:254, 2011; Arjen K. Lenstra, Eric R. Verheul.
"Selecting Cryptographic Key Sizes". Proceedings of PKC 2000, Lecture Notes in
Computer Science Volume 1751, pp. 446-465] and current recommendations and best
practices [Nigel P. Smart, Vicent Rijmen, Bogdan Warinschi, Gaven Watson. "Al-
gorithms, Key Sizes and Parameters Report". Technical Report of the European Union
Agency for Network and Information Security Agency, 2013; Nigel P. Smart, et al.
"ECRYPT 1II Yearly Report on Algorithms and Keysizes (2011-2012)"]. The system
may automatically change these parameters to trade security for performance, and
users of the system may override these parameters for ones of their choice.

The following figures 1-3 provide a step-by-step description of the present
disclosure; figure 4 describes an exemplary user interface of the present disclosure;
figure 5 provides an exemplary instantiation on a computer system; and figure 6
describes the generation of Proof-Certified Circuits.

Implementations of the present disclosure can be illustrated by way of examples.
Included herein is a set of flow charts representative of exemplary methodologies for
performing novel aspects of the disclosed system. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein, for example, in the form of
a flow chart or flow diagram, are shown and described as a series of acts, it is to be un-
derstood and appreciated that the methodologies are not limited by the order of acts, as
some acts may, in accordance therewith, occur in a different order and/ or concurrently
with other acts from that shown and described herein. For example, those skilled in the
art will understand and appreciate that a methodology could alternatively be rep-
resented as a series of interrelated states or events, such as in a state diagram.
Moreover, not all acts illustrated in a methodology may be required for a novel imple-
mentation.

[fig.1] illustrates a flow diagram 500 of the secure computation of a financial in-
strument in accordance to the present disclosure. At 501, the flow diagram starts: at
510, financial instruments are received from a network connection, or read from a

filesystem; at 520, secure computation programs, as stored on the filesystem or taken

[0047]
[0048]
[0049]

17

from said financial instruments, are initialized. At 530, financial instruments are parsed
and checked for correctness: in case any error is detected, the procedure stops at 595.
At 540, encrypted terms and/or values are decrypted. At 550, external data from
markets is retrieved as required by secure computation programs. At 560, the secure
computation is carried out: at least a value is determined from said secure computation.
At 570, data resulting from the secure computation is sent to the markets. At 580,
terms and/or values of the financial instrument are encrypted back. At 590, the
resulting financial instruments are sent to the network or stored locally on the

filesystem. At 595, the procedure stops.

The following algorithm illustrates claim 1, 6 and 11.
ALGORITHM 1. Secure computation on financial instruments.
a. The secure processing module obtains one or more financial instruments:
L. Said secure processing module listens for incoming connections that
contain financial instruments.
ii. Said secure processing module watches for changes on the
filesystem, and reads files whenever there is a change.
b. Secure computation programs are initialized by the secure cryptographic
module:
L. Secure computation programs could exist within financial in-
struments, or completely standalone on the filesystem.
ii. Memory is allocated and reserved.
c. Financial instruments are parsed and checked for correctness by the secure
processing module:
L. Syntactic validation is executed.
ii. Semantic validation is executed.
iil. Numeric values are checked against ranges of market data to detect
inconsistencies and outliers.
iv. Cryptographic signatures are checked, and the general correctness of
the encrypted data.
V. In case of error on any of the previous steps, the procedure stops.
d. Financial instruments are received by the secure cryptographic module from
the secure processing module.
e. Encrypted terms and/or values are decrypted by the secure processing module

(note that some financial instrument may not have any encrypted term and/or

values, nor contain secure computation programs; that is, it’s possible to carry

18

out secure computation on conventional financial instruments by using secure

computation programs stored on the filesystem):

L.

ii.

Keys to decrypt the encrypted values are retrieved.

The decryption process is executed: note that the encrypted data of
some encryption methods do not have to be decrypted (eg. ho-
momorphic encryption and the encrypted shares of a secret sharing

scheme).

External data is retrieved from markets, as required by secure computation

programs:

L.

ii.

Exemplarily, current public values of indices, shares, bonds, options,
futures and other financial instruments are obtained.

Exemplarily, the secret encrypted values of other financial in-
struments could be retrieved and used in the secure computation of

the present financial instrument.

Secure computation programs are executed by the secure cryptographic

module, that is, for every secure computation program:

L.

ii.

iil.

Get the type of secure computation program, as any of the described
within the present disclosure, but not strictly limited to them: Yao’s
garbled circuits and oblivious transfers, GMW circuits, secret
sharing, homomorphic encryption, ORAMs, or combinations thereof;
garbled circuits and oblivious transfer being the preferred one.
Check digital signatures of secure computation programs: if found
wrong, stop the execution.

Execute said secure computation programs:

1. Given the secure computation program, the financial in-
strument management system executes it using the adequate
library from the libraries for secure computation of the
financial instrument management system: said library could
be proprietary or open-source, in case more security through
transparency and peer-examination of the critical source
code is desired.

2. The secure computation program may need access to
external data sources, encrypted or not, during its execution:
by default is granted, unless a policy explicitly denies it.

3. At least a value is determined from said secure com-

putation.

[0050]

[0051]
[0052]
[0053]

19

h. Data resulting from the secure computation is sent to the markets by the
secure cryptographic module.
L. Exemplarily, orders to take exposure in any financial instrument, in-

dependently of their readiness for secure computation.

L. Terms and/or values of the financial instrument are encrypted back by the
secure cryptographic module:
L. Keys to encrypt the encrypted values are retrieved.
ii. The encryption process is executed: some encryption methods
require the information to be encrypted back, such as authenticated

symmetric encryption and public key encryption.

J- Financial instruments are received by the secure processing module from the

secure cryptographic module.

k. The secure processing module sends to the network the resulting one or more
financial instruments, or stores them locally on the filesystem.
L. Alternatively, they could be deleted if they are deemed as not needed

anymore

[fig.2] illustrates a flow diagram 600 of the automatic conversion from a conventional
financial instrument to a financial instrument ready for secure computation in ac-
cordance to the present disclosure. At 601, the procedure starts: at 610, financial in-
struments are received from a network connection, or read from a filesystem. At 620,
financial instruments are parsed and checked for correctness. At 630, financial in-
struments are matched against templates specifically designed for the transformation of
secure financial instruments: if no transformative template is found, the procedure
stops at 670. At 640, the fields and/or terms of the conventional financial instrument
are rewritten according to the template. At 650, values of the financial instrument are
encrypted. At 660, the resulting financial instrument is sent to the network or stored
locally on the filesystem. At 670, the procedure stops.

The following algorithm illustrates claim 2, 7 and 12.

ALGORITHM 2. Conversion of financial instrument for secure computation.
a. The secure processing module obtains one or more financial instruments:

L. Said secure processing module listens for incoming connections that
contain financial instruments.

ii. Said secure processing module watches for changes on the

20

filesystem, and reads files whenever there is a change.

Financial instruments are parsed and checked for correctness by the secure

processing module:

L. Syntactic validation is executed.
ii. Semantic validation is executed.
iil. Numeric values are checked against ranges of market data to detect

inconsistencies and outliers.

iv. Cryptographic signatures are checked, and the general correctness of
the encrypted data.
V. In case of error on any of the previous steps, the procedure stops.

Financial instruments are matched against templates specifically designed for

the transformation of secure financial instruments by the secure processing

module: if no transformative template is found, the procedure stops. For every

financial instrument:

L. The type of financial instrument is determined (eg. option, swap,
swaption,...).

ii. The library of transformative templates is searched for said type.

iil. The transformative template is retrieved, or the procedure stops.

Fields and/or terms of the financial instruments are rewritten by the secure

processing module according to the template:

1. The names of fields is changed.

ii. Fields are added.

iil. Fields are removed.

iv. And if necessary, new documents describing financial instruments

dependant on the processed financial instrument may be created.

Financial instruments are received by the secure cryptographic module from
the secure processing module.

Values of the financial instruments are encrypted by the secure cryptographic

module:

L. Encrypting values, noting that the process depends on the encryption
method:
1. Obtain the keys for encryption: if the financial instrument

will be used by third parties, use the public keys of said third

parties to encrypt the values, as retrieved from a public key

[0054]

[0055]
[0056]

21

repository. If secret shares will be used to store encrypted
information on the financial instrument, obtain them by
choosing from a list of pre-calculated secret shares.

2. Encrypt the values of the financial instrument and replace
the unencrypted values by the encrypted ones, including

changing the tags/fields referencing said encrypted values.

ii. If a secure computation program were to be stored within the
financial instrument (eg. a default secure program containing the
method for the valuation of the financial instrument; or a default
trading strategy for said financial instrument):

1. If the secure computation program is to be digitally signed,
generate said signature.

2. Create new fields within the financial instrument to store the
secure computation program and the type of secure com-

putation program to be used.

3. Marshal the secure computation program and store it within
said fields.
g. Financial instruments are received by the secure processing module from the

secure cryptographic module.
h. The secure processing module sends to the network the resulting one or more
financial instruments, or stores them locally on the filesystem.
[fig.3] illustrates a flow diagram 700 of the automatic aggregation of conventional and
financial instruments ready for secure computation in accordance to the present
disclosure. At 701, the procedure starts: at 710, financial instruments are received from
a network connection, or read from a filesystem. At 720, said financial instruments are
parsed and checked for correctness: in case any error is detected, the procedure stops at
790. At 730, a new financial instrument is created to store the aggregated data of the
financial instruments. At 740, references to the financial instruments are stored in the
aggregate financial instrument. At 750, values of the aggregate financial instrument are
encrypted. At 760, values of the referenced financial instruments are encrypted:
proceed as in the previous detailed steps with each referenced value. At 770, all the
financial instruments are packaged within the same file, and at 780 the package is sent
to the network or stored locally on the filesystem. At 790, the procedure stops.
The following algorithm illustrates claim 3, 8 and 13.
ALGORITHM 3. Aggregation of financial instruments for secure computation.

[0057]

d.

22

The secure processing module obtains one or more financial instruments:

L. Said secure processing module listens for incoming connections that
contain financial instruments.

ii. Said secure processing module watches for changes on the

filesystem, and reads files whenever there is a change.

Financial instruments are parsed and checked for correctness by the secure

processing module:

L. Syntactic validation is executed.
ii. Semantic validation is executed.
iil. Numeric values are checked against ranges of market data to detect

inconsistencies and outliers.

iv. Cryptographic signatures are checked, and the general correctness of
the encrypted data.
V. In case of error on any of the previous steps, the procedure stops.

A new financial instrument is created by the secure processing module to
store the aggregated data of the financial instruments:
1. Fields are created to store mean, median and percentile values,

among other kind of aggregations.

References to the financial instruments are stored in the aggregate financial

instrument by the secure processing module. That is, for every financial in-

strument:
L Said financial instrument is checked for inclusion.
ii. A reference to said financial instrument is stored in the aggregate

financial instrument.

Financial instruments are received by the secure cryptographic module from
the secure processing module.
Values of the aggregate financial instrument are encrypted by the secure cryp-
tographic module:
L. If the values weren’t encrypted, and depending on the encryption
method:
1. Obtain the keys for encryption: if the financial instrument
will be used by third parties, use the public keys of said third
parties to encrypt the values, as retrieved from a public key

repository. If secret shares will be used to store encrypted

23

information on the financial instrument, obtain them by
choosing from a list of pre-calculated secret shares.
Said values are aggregated.

3. Encrypt the values of the financial instrument and replace
the unencrypted values by the encrypted ones, including

changing the tags/fields referencing said encrypted values.

ii. If the values were encrypted, and depending on the encryption
method:

1. If the encryption method used didn’t allow re-encryption
without decryption (eg. classic public key encryption),
encrypted values will have to be de-encrypted and then
proceed as in the previous steps.

2. If the encryption method used allowed re-encryption without
decryption (eg. homomorphic encryption), aggregate the

values without decrypting said encrypted values.

iil. If secure computation programs were to be stored within the financial
instrument (eg. a default secure computation program containing the
method for the valuation of the financial instrument; or a default
trading strategy for said financial instrument):

1. If the secure computation program is to be digitally signed,
generate said signature.

2. Create new fields within the financial instrument to store the
secure computation program and the type of secure com-
putation program to be used.

3. Marshal the secure computation program and store it within
said fields.

Values of the referenced financial instruments are encrypted by the secure
cryptographic module:

L. Proceed as in the previous detailed steps with each referenced value.

Financial instruments are received by the secure processing module from the
secure cryptographic module.
All the financial instruments are packaged by the secure processing module

within the same file.

[0058]

[0059]

[0060]

24

J- The secure processing module sends to the network the resulting packaged

financial instrument, or stores it locally on the filesystem.
[fig.4] illustrates a flow diagram 800 of the load and use of secure financial in-
struments from a spreadsheet enabled for secure computation in accordance to the
present disclosure. At 801, the procedure starts: an add-in may be loaded within a
spreadsheet software package or a new spreadsheet program with specific functionality
for secure computation could be used. At 810, a financial instrument ready for secure
computation is received from a network connection, or read from a filesystem. At 8§20,
said financial instrument is parsed and checked for correctness: the validation is
syntactic, semantic and numeric values are checked against market data to detect in-
consistencies and outliers; cryptographic signatures are also checked; in case any error
is detected, the procedure stops at 890. At 830, a template for spreadsheet presentation
is selected matching the type of financial instrument: different instruments have
different fields and requirements to present them. At 840, the financial instrument is
shown within the spreadsheet using its corresponding template. At 850, features to
carry out secure computations according to the given financial instrument are enabled:
for example, trading according to the financial instrument; or securely compute against
other financial instruments for simulation or back-tracking purposes. At 860, the user
may secure compute with the financial instrument following the steps described in
FIG. 1 and Algorithm 1. At 870, modified values of the financial instrument are re-
encrypted, if needed. At 880, the resulting financial instrument is sent to the network
or stored locally on the filesystem. At 890, the procedure stops.

The following exemplary code listing illustrates a financial instrument in fpML with
encrypted values and terms and secure computation programs in accordance to the
present disclosure. The code listing shows an exemplary encryption of some of the
terms of a conditional variance swap: the identity of the second party, party 2, has been
encrypted (tags partyReference, receiverPartyReference, party and partyld) and all the
numerical terms of the contract have also been encrypted (tags amountEncrypted, vari-
anceStrikePrice, upperBarrier, lowerBarrier and vegaNotionalAmount). There is also
a secure computation program for a trading strategy in the form of simple garbled
circuit. The method of encryption used could be any of, but not restricted to: au-
thenticated symmetric encryption; public key encryption; homomorphic encryption;
shares of secret sharing scheme; garbled circuits; ORAMs; cryptographically-secure
obfuscation; Proof-Certified Secure Programs and Circuits; and combinations thereof.

<?xml version="1.0" encoding="ut{-8"?>

<requestConfirmation xmlns="http://www.fpml.org/FpML-5/confirmation”
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance" fpmlVersion="5-2"

xsi:schemalocation="http://www .fpml.org/FpML-5/confirmation

25

././fpml-main-5-2.xsd http://www.w3.0rg/2000/09/xmldsig#
./../xmldsig-core-schema.xsd">

<header>

<messageld mes-

sageldScheme="http://www.party l.com/coding-scheme/message-id">12342342432</
messageld>

<sentBy messageAd-

dressScheme="http://www.party l.com/coding-scheme/party-id">32123</sentBy>
<creationTimestamp>2015-09-09T04:03:00Z</creationTimestamp>

</header>

<isCorrection>false</isCorrection>

<correlationld correlation-
IdScheme="http://www.test.com/conversationld">PA/2015/09/09/12342342432</corr
elationld>

<sequenceNumber>1</sequenceNumber>

<trade>

<tradeHeader>

<partyTradeldentifier>

<partyReference href="party001" />

<tradeld

tradeldScheme="http://www parties.com/coding-scheme/trade-id">2313</tradeld>
</partyTradeldentifier>

<partyTradeldentifier>

<partyReference
hrefEncrypted="7ed5c64dfceb7728{d850c3280a5220c97afd846{66b75adaac" />
<tradeld

tradeldScheme="http://www parties.com/coding-scheme/trade-id">6569</tradeld>
</partyTradeldentifier>

<tradeDate 1d="d321">2014-01-01</tradeDate>

</tradeHeader>

<varianceSwap>

<variancelLeg>

<payerPartyReference href="party001" />

<receiverPartyReference
hrefEncrypted="7ed5c64dfceb7728{d850c3280a5220c97afd846{66b75adaac" />
<underlyer>

<singleUnderlyer>

<equity>

26

<instrumentld instrumen-

tIdScheme="http://www fpml.org/schemes/4.1/instrumentld">IBM</instrumentId>
<description>IBM ordinary shares</description>

<exchangeld ex-

changeldScheme="http://www .fpml.org/schemes/4.1/exchangeld">NYSE</exchangel
d>

</equity>

</singleUnderlyer>

</underlyer>

<settlementType>Cash</settlementType>

<valuation>

<valuationDate id="FinalValuationDate">

<adjustableDate>

<unadjustedDate>2013-05-23</unadjustedDate>

<dateAdjustments>
<businessDayConvention>NotApplicable</businessDayConvention>

</date Adjustments>

</adjustableDate>

</valuationDate>

<optionsPriceValuation>true</optionsPrice Valuation>

</valuation>

<amount>

<optionsExchangeDividends>true</optionsExchangeDividends>
<additionalDividends>false</additionalDividends>

<variance>

<closingLevel>true</closingLevel>

<variance Amount>

<currency>USD</currency>
<amountEncrypted>f80384bf3e7a851fbe3ea331663d4dfb76cc54eled4b974a531</am
ountEncrypted>

</variance Amount>
<varianceStrikePriceEncrypted>82{57d36ea195749¢c6b2a390{caf8f9cfa2c98a10d61be
122dce9d</varianceStrikePriceEncrypted>

<boundedVariance> <realisedVarianceMethod>Previous</realisedVarianceMethod>
<daysInRangeAdjustment>true</daysInRange Adjustment>
<upperBarrierEncrypted>18413a75fc1€03845249048610d5702ee310e90{7289fdddcb8
e2</upperBarrierEncrypted>
<lowerBarrierEncrypted>d00eca55d46d84838e5b2{8f909edc8b3f4d6e327606608878d

27

d5f</lowerBarrierEncrypted>

</boundedVariance>

<exchangeTradedContractNearest>

<instrumentld instrumen-

tIdScheme="http://www fpml.org/schemes/4.1/instrumentld">IBM</instrumentId>
<description>IBM ordinary shares</description>

<currency>USD</currency>

<exchangeld ex-

changeldScheme="http://www .fpml.org/schemes/4.1/exchangeld">NYSE</exchangel
d>

<relatedExchangeld ex-

changeldScheme="http://www .fpml.org/schemes/4.1/exchangeld">CBOE</relatedExc
hangeld>

<contractReference>CBOE SEP04 IBM EUROPEAN OPTION</contractReference>
<expirationDate>

<adjustableDate>

<unadjustedDate>2013-07-25</unadjustedDate>

<date Adjustments> <businessDayConvention>NONE</businessDayConvention>
</date Adjustments>

</adjustableDate>

</expirationDate>

</exchangeTradedContractNearest>

<vegaNotional AmountEncrypted>af860207075{c2c1087a59195ebdd36dac7339¢a266
a33f</vegaNotional AmountEncrypted>

</variance>

</amount>

</variancel.eg>

</varianceSwap>

</trade>

<party id="party001">

<partyld>Party 1</partyld>

</party>

<party idEncrypted="7ed5c64dfceb7728{d850c3280a5220c97afd846f66b75a4aac">
<partyldEncrypted>18c1bad475ef00b1c9d8ada3d31{f36b2e1983ac45a95a1{07dacd80f
6¢7s</partyldEncrypted>

</party>

<secProgram>

<type>SimpleGarbledCircuit</type>

[0061]

28

<description>Trading strategy</description>
<program>a56468310ba26e6bf45b5ea3b4291d35225bb8109af06965c9731858(45421
55b4193e57dd1dc9837df75ceacc378a02{3860cS5af012a45339c65113e1b1888cf190b39
80854a66dfddd4767924319e09782e517d126261b51d91c37bfc6c7fc6d0a09ca5S83e7d3
7£5a0df5501f29e3ac64cb094e32a48a1558b44{6b4098782629¢89886fc06{71aaacc5d26
82b2d6e9aed964386cd53369340d9a513¢2332(225a7806647119043ac88c0dee817{1e9
9a7592a669612fe5cd6c64169cab4d10e7968{4f67571£79ce008ba9406b2aca83b439{57
36d1{d79¢5b32e56d8f6cc7cd091d3ab690c83{8002f2acc617a881874504a77c8dcc444
43069daaddd9987202e¢18d31cfc0c3602d99e5¢854312e15211671dd8cf6dfdbda2bebd2
428136d8b3ddb4471c75983060a379alaa2a10072bd5c23cd01d0fc2d39e599d{4502ba
fa28567f4234a01ce403bc19876adbb7a8b7{80a818c2720ecccc451c9e28c5e02caf6f11
2369557f4e6fb2e24facad4</program>
<proof>e5b74ef396451993ae828a669454{6ad 14ee4f7575ae38797fac06a2658d 174772
560f3bb24{0aef7188{007b7f605d35b08023{f8b569ab5d182f17facbaf8a5d776877{90c
0dc1d07e9bdb6de338967ce3a33d2c6c443ebbe3facbea8dde7defa766ec1a339b3a9790
1a1695ec8e699fec4d90171b7c83681313a1592a51d82884b924{dd55143fa5¢c16991a46
ecfae9d428517161cb55a7¢5939562c45c423b02ced4d34c2d12d569¢c45d517d8800c1e2
2782a3d38d23c2d317{c869d879b289¢7d57ddect34d1b79c63144775f6¢5384b4b35¢c7
5157202a2¢ca2e89990f19c¢b6292a07cb0db56{9¢29eb2516573{b639123ca0206fd50bec
d839b2cfd0ad5{1ed395d7c93850650b113d147167d74c4325de54d4b5d6335da56ab00
dc8afd00dd7{591ae5184781303e5a7af1daS3acfSecda32845be588{b973607a592092(4
1936a01ba25¢9d45b6373¢c738d7091{ffbd6b3e925ebb113a7f33d03af505¢78e¢3014{e28
c5ebd8a%02da2ae1269ee64c1eb15604cb88599bac530a8c919dc7697b118f5¢31831ebb
a412a98d59fddca63e9b50c45d460fe8§746d40{85805876849a0563aba40142609¢c3db33
64{4cbd398941a86db215c049¢7e09fe38a9ac27965b04b59d5de9ae561b998031d3677¢
c00eeedf90358e80738</proof>
</secProgram>
</requestConfimation>

The following exemplary code listing a financial instrument in FIXML with
encrypted values and terms and secure computations programs in accordance to the
present disclosure. The code listing shows an exemplary encryption of some of the
terms of a transaction order: specifically, the quantity of shares has been encrypted.
There is also a secure computation program for a trading strategy in the form of a
simple garbled circuit. The method of encryption used could be any of, but not re-
stricted to: authenticated symmetric encryption; public key encryption; homomorphic
encryption; shares of secret sharing scheme; garbled circuits; ORAMS; crypto-
graphically-secure obfuscation; Proof-Certified Secure Programs and Circuits; and

combinations thereof.

[0062]

29

<?xml version="1.0" encoding="ASCII"?7>

<FIXML>

<Order ClOrdID="789"

Side="2"

TransactTm="2015-09-09T05:00:00-01:00"

OrdTyp="2"

Px="27.43"

Acct="326827372">

<Hdr Snt="2015-09-09T05:00:00-01:00"

PosDup="N"

PosRsnd="N"

SeqNum="234">

<Sndr ID="HEDGEFUND"/>

<Tgt ID="ABROKER"/>

</Hdr>

<Instrmt Sym="IBM"

1D="3243268423"

IDSre="1"/>

<OrdQty
Qty="0e2c5e3{d5fdb01186d5a63ae5963faf27c0d0eb02a45be49fbacb8d12"/>

<secProgram>

<type>SimpleGarbledCircuit</type>

<description>Trading strategy</description>

<program>ee512d5fb1d19ae732263346661566bfc3b8b0f06424ee95fbadc53d59¢86
049b90f7daeb445146c1e7afc7{092953caldccb197b71ce58417dc62a9069daaddd99872
02e18d31cfc0c3602d99e5¢854312e15211671dd8cfodfdbda2bebd2428f36d8b3ddb447
1c759813060a379alaa2al0072bd5c23cbfac9a8abc46676bb24273efc3db9c828087b67
3ddbc785da32417¢51d61db6a53ee334289 1fccef8e6853cec0756de17d8da2e78857986
bdf612b5a71ac8e08f6a33b06dc8e42833a0ebb4 1b5{d65328fed4ab882a332ee85{9268a9
d284ccaf4a9d7707fb6d6a83be651d1252f8effffc9d9d07956e884a57a64db533bbf0ae5
119e1ab04543d4535d6d5888cb5{45308f1291717ca23{6b52{57(715f4c8444758ea0937
cOecfb42fb655d88a3c1{a45980bcOc18aal879e666baca9c2295¢158d85473(f2e818a73
2c¢d3e2401d622b9341cf9cec0481a152b65dbfed2cec1{8f5315e¢9cf7cabe8cledddcdaal
lef4</program>

<proof>e6a2c607b85bd96cabecbb3d815¢341ac52345¢d268d82c970fc5919¢c1d6abf36
7ca360bc0696e47bee4f61bbe16a6268(192725982d5a60ffe9eb486fccedf0f206d0831f1
6969¢22c80219756ac8b685(b8216€239098307a2ac0681{8ee011d48006833b975b828d
33865b77b420b169e41b0e2d1163b80d5ded laacda4563a8b9b611aa95e3a2d24ecf93a

[0063]

[0064]

[0065]

[0066]

30

8187e90113282412953¢c398b7ad1b1b05b30223bf945956bdcbfb2cb1a7be3eb03704c9%e
39392dd027 1{feefcadcS5fbbedc9df6fab1991bd08e903e832a635a219bef0087ec635d6aa
68560ffa39951f1c899ab2e13b69dcdc82351ea444e63f0b476f0b32a339ecd4ebeedd 1489
{45¢704049738129901fa3e51c4313a4cd5b49e47f01107b45ab4714cc8438d7924d9222f
7ef6ab0b8662b4244be9060600a008957b7{874c0dd0de87cd08846a2fe2e66fc070al 1l
8c0545b81581728fb7258105d48{12ed381273347b7341569131dca504801a8859¢702b
9ddb1975e55cfff3b1488601187a94b767{16a68c082a8609¢7023c7adaf5088a8ec9{c9ca
6b8501d6caba709ebeab847¢15b2656e2a85a0c727600600a9¢c254717a26ba6f19871d6a
£450d09545d124bf727a428edd7ale1a2a796807f431055¢025945d5db214b0df4e155fa
€6273add6cf252b5</proof>

</secProgram>

</Order>

</FIXML>

[fig.5] illustrates is a non-limiting exemplary computer system 900 that executes
secure computations on financial instruments in accordance to the present disclosure. It
illustrates an exemplary computer system 900 as further discussed herein and in ac-
cordance with the present disclosure. The system is described herein only in so far as is
necessary for an understanding of the present disclosure. The system 900 can be used
for the operations described in association with the detailed descriptions, imple-
mentations and examples described herein. For example, the system 900 may be
included in any or all of the server components 901, 902 and 903 discussed herein;
these components incorporate a Central Processing Unit 904, a memory 905, a network
device 906, a storage device 907 and a display 908: each of the components 904, 905,
906, 907 and 908 are interconnected using a system bus 909.

The Central Processing Unit 904 executes instructions within the server components
901, 902 and 903 discussed herein. In one implementation, the Central Processing Unit
904 is a single-core and single-threaded Central Processing Unit. In another imple-
mentation, the Central Processing Unit 904 is a multi-core and multi-threaded Central
Processing Unit. The Central Processing Unit 904 executes instructions stored in the
memory 905 or in the storage device 907, processing data in the memory 905 or in the
storage device 907, data which may be transmitted over a network device 906 or which
may be displayed graphically in a user interface on a display 908.

The memory 905 serves as an information store for system 900. In one imple-
mentation, the memory 905 is a computer-readable medium. In another imple-
mentation, the memory 905 is a volatile memory unit. In another implementation, the
memory 905 is a non-volatile memory unit.

The network device 906 is capable of transmitting information to and from other

computer systems 900 or any other computer systems. In one implementation, the

[0067]

[0068]

[0069]

[0070]

31

network device 906 transmits information over fiber optic cables. In another imple-
mentation, the network device 906 transmits information over copper cables. In
another implementation, the network device 906 transmits information over mi-
crowaves. In any or all of the previous implementations, the network device 906 may
directly access the memory 905 and the Central Processing Unit 904 may directly
access the network device 906.

The storage device 907 is capable of storing big amounts of data for the system 900.
In one implementation, the storage device 907 is a computer-readable medium. In
various different implementations, the storage device 907 may be a hard disk device, a
floppy disk device, an optical disk device, a tape device, a Network-Attached Storage
device, a Storage-Area Network device or a Cloud Storage device.

The display device 908 is capable of displaying processed data in a user interface. In
one implementation, the display device 908 is a cathode ray tube monitor. In another
implementation, the display device 908 is a liquid crystal display monitor. In another
implementation, the display device 908 is a thin-film transistor monitor. In another im-
plementation, the display device 908 is made from organic light-emitting diodes.

The algorithms, methods and systems can be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in a combinations of them.
The algorithms and methods and systems, can be implemented in a computer program
product tangibly embodied in an information carrier, e.g., in a machine-readable
storage device or in a propagated signal, for execution by a programmable processor;
and method steps can be performed by a programmable processor executing a program
of instructions to perform functions of the described implementations by operating on
input data and generating output. The described algorithms, methods and systems can
be implemented advantageously in one or more computer programs that are executable
on a programmable system including at least one programmable processor coupled to
receive data and instructions from, and to transmit data and instructions to, a data
storage system, at least one input device, and at least one output device. A computer
program is a set of instructions that can be used, directly or indirectly, in a computer to
perform a certain activity or bring a certain result. A computer program can be written
in any form of programming language, including compiled or interpreted languages,
and it can be deployed in any form, including as a stand-alone program or as a module,
component, subroutine, or other unit suitable for use in a computing environment.

Suitable processors for the execution of a program of instructions include, by way of
example, both general and special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer. Generally, a processor
will receive instructions and data from a read-only memory or a random access

memory or both. The essential elements of a computer are a processor for executing in-

[0071]

[0072]

[0073]

[0074]

32

structions and one or more memories for storing instructions and data. Generally, a
computer will also include, or be operatively coupled to communicate with, one or
more mass storage devices for storing data files; such devices include magnetic disks
such as internal hard disks and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying computer program instructions
and data include all forms of non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM, and flash memory devices;
magnetic disks such as internal hard disks and removable disks; magneto-optical disks;
and CD-ROM and DVD-ROM disks. The processor and the memory can be sup-
plemented by, or incorporated in, ASICs (Application-Specific Integrated Circuits) or
FPGAs (Field-Programmable Gate Arrays) or GPUs (Graphics Processing Units).

To provide for interaction with a user, the features can be implemented on a
computer having a display device such as CRT (Cathode Ray Tube) or LCD (Liquid
Crystal Device) or FT (Thin-Film Transistor) or OLED (Organic Light-Emitting
Diode) monitor for displaying information to the user and a keyboard and a pointing
device such as a mouse or a trackball by which the user can provide input to the
computer.

The algorithms, methods and systems can be implemented in a computer system that
includes a back-end component, such as a data server, or that includes a middleware
component, such as an application server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical user interface or an
Internet browser, or any combination of them. The components of the system can be
connected by any form or medium of digital data communication such as a commu-
nication network. Examples of communication networks include, e.g., a LAN, a
RDMA-enabled connection, a WAN, and the computers and the networks forming the
Internet. Those skilled in the art will appreciate that computer systems have a variety
of configurations and protocols that can be used to communicate data, and thus, no
particular configuration or protocol is considered limiting.

The computer system can include clients and servers. A client and server are
generally remote from each other and typically interact through a network. The rela-
tionship of client and server arise by virtue of computer programs running on the re-
spective computers and having a client-server relationship to each other.

In some examples, said previously described non-limiting exemplary computer
system 900 implements all the algorithms, methods and systems described herein, the
load and use of secure financial instruments from a spreadsheet enabled for secure
computation as previously described in [Fig. 4] and automated theorem proving
procedures described subsequently. Descriptions of additional claimed embodiments

follow.

[0075]

[0076]

[0077]

33

All the programs and circuits using the cited encryption schemes in the present
disclosure (Yao’s garbled circuits, GMW, reusable garbled circuits, secret sharing, ho-
momorphic encryption, ORAM and/or cryptographically-secure obfuscation) could be
accompanied with proofs. Said proofs on secure programs and circuits achieve one or
more of the following goals: conformance of the circuits to an agreed specification,
providing assurance that the circuit will really calculate what is supposed to calculate;
correct termination of the circuit/program; and/or guarantees that some mathematical
pre-conditions and post-conditions on the inputs and outputs will be satisfied; among
other uses of said proofs. And although the use of automated theorem proving in cryp-
tography is not new (eg. verification of the implementation of cryptographic imple-
mentations), the attachment of proofs to secure computation programs and circuits as
claimed in the present disclosure and circuits is novel. These proofs would be of
particular utility to users of financial instruments, especially when their secure
programs and circuits appear in encrypted forms, since they would enable new
scenarios such as their secure execution on remote computers without neither of the
involved parties having any previous relationship: that is, conventional human trust
between the parties is removed and replaced by mathematical assurances on the
procedures to be carried out on the financial instrument, besides the previously
mentioned enhanced security properties that the use of secure computation protocols
provide regarding the privacy of the data used during the computations.

Details about automated theorem proving can be found in the papers cited herein and
in the following books [Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel.
“Isabelle/HOL: A Proof Assistant for Higher-Order Logic”. Springer, 2002. ISBN
978-3-540-433767; Yves Bertot, Pierre Casteran. “Interactive Theorem Proving and
Program Development”. Springer, 204. ISBN 978-3-540-20854-9]. Further details on
the application of automated theorem proving to secure computation follows:

. Proof-Certified Circuits: each circuit within a cryptographically secure
financial instrument could be accompanied with one or more mathematical
proofs generated with the help of automated theorem provers. The description
of the circuits could be provided in multiple forms, exemplarily: gate level de-
scriptions; Register-Transfer Level descriptions; descriptions in Hardware De-
scription Language, such as Verilog circuits; and combinational circuits, or
sequential ones so that no unrolling is necessary and smaller circuits and
proofs are generated; the more expressive the descriptions of the circuits, the
more powerful, sophisticated and shorter the proofs about them could be. Fur-
thermore, and without loss of generality, the circuits could be Boolean (as
those used with Yao’s Garbled Circuit) or arithmetic (as those used with

secret sharing schemes). Also, the proofs could be digitally-signed, to provide

34

authenticity and non-repudiation of said proofs and circuits. The description
of the procedure to generate said proofs is described below, in [Fig. 6].
Proof-Certified Secure Programs. Some secure computation programs could
also exist in higher level languages than circuits: for example, ORAMs could
be programmed in a Typed Assembly Language. For said higher-level
programs, annotations tracing the information flow from inputs to outputs are
generated when the code is compiled; then, the procedure continues with the
generation of logical preconditions implying that any possible execution of
the binary is safe according to a set of axioms and rules, if true; afterwards, an
automated theorem prover uses said axioms, rules and preconditions to
generate the proofs for the secure programs. Said proofs can be checked much
faster and simpler when loading the secure computation program.
Proof-Certified Reusable Garbled Circuits: One limitation of garbled circuits
is that they cannot be reused: that is, a garbling of a circuit can only be used
one time for a given input, since multiple evaluations would compromise the
privacy properties of said garbled circuit. However, combining garbling
schemes with functional encryption, it’s possible to obtain garbled circuit that
runs on an arbitrary number of encoded inputs [Shafi Goldwasser, Yael
Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. “Reusable garbled circuits and succinct functional encryption”
STOC 2013, pages 555-564]. A Proof-Certified Reusable Garbling scheme
PCRG = (PCRG.Garble, PCRG.Enc, PCRG.Eval), allowing to check whether
the garbled circuit follows a specification as described by a given proof, as
defined herein: let E = (E.KeyGen, E.Enc, E.Dec) be a semantically secure
symmetric-key encryption scheme and FE = (FE.Setup, FE.KeyGen, FE.Enc,
FE.Dec) be a succinct fully secure functional encryption scheme for any class
of circuits.

PCRG.Enc (gsk, x): Compute ¢ , < FE.Enc(fmpk, (sk, x)) and output c,.
PCRG.Eval (I, P, c,): Compute and output FE.Dec(I', P, c,).

PCRG.Garble (1%, C):

1. Generate FE keys (fmpk, fmsk) « FE.Setup(1¥) and a secret key sk
«— E.KeyGen(1¥).

ii. Let E = E.Enc(sk, O)

1ii. Define Ug to be the following universal circuit (Ug takes as input a

secret key sk, a value x and proof P about circuit C):
1. Compute C = E.Dec (sk, E).
2. If there is any digital signature accompanying the circuit C,

check it: if it’s not valid, stop the execution of the universal

[0078]

35

circuit.

3. Check that C conforms to proof P: if not, stop the execution
of the universal circuit.

4. Run C on x.

iv. Let I' « FE.KeyGen(fmsk, Ug) be the reusable garbled circuit. Said
garbling I' of circuit C, when included within the financial in-
strument, would constitute an example of an encrypted proof-
certified secure computation program.

V. Output gsk := (fmpk, sk) as secret key and I" as the garbling of C.

As shown on [Fig. 6], the user provides a structural description of the circuit [1001]
describing the connections of the components of the circuit, and the circuit’s be-
havioural description [1002]. Both descriptions are automatically translated to the
language of the Interactive Theorem Prover (IPV), since constructing proof-checkers
in native circuits/HDLs would be very complicated: the structural description of the
circuit [1001] is translated as the implementation [1020] and the circuit’s behavioural
description [1002] is translated as the specification [1030]. A library of formally
verified generic circuits [1010] contains the formal verification of the components that
the structural description of the circuit [1001] can use: the basic logic gates AND,
NAND, OR, NOR, NOT, XOR, XNOR [1011]; MUX [1012], carrying the output
signal from one of the n input bits according to the select lines, and its inverse
DEMUX [1012]; ENCODER [1013] with 2N inputs and N outputs, outputting the
physical address of the wire as selected from the input wire, and DECODER [1013]
with N inputs and 2~ outputs, outputting a 1 on only the selected wire as chosen from
N input bits; COMPARATORs [1014], for testing identity and also magnitude;
ADDER and SUBSTRACTOR [1015] with two n-bit input vectors, an output vector
and a carry bit vector; MULTIPLY [1016] with two r-bit input vectors and an output
vector, built with ADDERSs [1015]; among other components of circuits. The main
benefit of this library of formally verified generic circuits is that the verification of
most circuits built with its component is almost automatic, only requiring user input to
guide the demonstration of the proof on very specific cases which the IPV can’t
handle. Therefore, theorems [1040] denoting that the circuits imply the specification
are generated from the combination of [1010], [1020] and [1030], which are passed to
the IPV [1050] for their automatic verification. When successful, two outputs are
generated: a formal proof that the given circuit satisfies the specification [1060], which
can be checked with far less computational resources that the resources used for its

generation, and which would be digitally signed; and the formally verified circuit code

36

[1070], now fully synthesized in contrast to the structural description of the circuit
[1001].
[0079] The following algorithm illustrates some elements of claims 4, 5, 9, 10, 14 and 15.
[0080] ALGORITHM 4. Generation of proofs for proof-certified secure computation
programs.
[0081] a. Given the structural description of the circuit, translate it as the imple-
mentation. That is, for every component of the circuit:
L. Search said component on the IPV’s library of formally verified
components and circuits.
ii. Instantiate said component, now with the language of the IPV.
iil. Interconnect the wires of the component with the other components,

until all the structural description of the circuit has been translated.

b. Given the circuit’s behavioural description, translate it as the specification:
L. Parse the source code of the circuit’s behavioural description and
obtain its Abstract Syntax Tree (AST).
ii. Cover the AST, emitting source code in the language of the IPV

using a table of translations.

c. Given the implementation, specification and the library of formally verified
circuits, generate formal proofs and the formally verified circuit code:
L. Generate theorems by combining said inputs and using a library of
rules, axioms and preconditions.
ii. Verify the generated theorems:

1. If the Automated Theorem Prover is unable to automatically
obtain formal proofs, a situation that rarely happens: provide
user input guiding the Automated Theorem Prover.

2. Obtain the formal proofs implying that the circuit satisfies
the specification from the Automated Theorem Prover: said
proofs are computationally easy to check, but computa-
tionally difficult to generate.

3. Digitally sign said formal proofs.
iil. Obtain the fully synthesized and formally verified circuit code.
[0082] The following algorithm illustrates claims 4, 9 and 14.

[0083] ALGORITHM 5. Secure computation of proof-certified secure computation

programs on financial instruments.

[0084]

d.

37

The secure processing module obtains one or more financial instruments:

L. Said secure processing module listens for incoming connections that
contain financial instruments.

ii. Said secure processing module watches for changes on the

filesystem, and reads files whenever there is a change.

Secure computation programs are initialized by the secure cryptographic

module:

L. Secure computation programs could exist within financial in-
struments, or completely standalone on the filesystem.

ii. Memory is allocated and reserved.

Financial instruments are parsed and checked for correctness by the secure

processing module:

L. Syntactic validation is executed.
ii. Semantic validation is executed.
iil. Numeric values are checked against ranges of market data to detect

inconsistencies and outliers.

iv. Cryptographic signatures are checked, and the general correctness of
the encrypted data.
V. In case of error on any of the previous steps, the procedure stops.

Financial instruments are received by the secure cryptographic module from

the secure processing module.

Encrypted terms and/or values are decrypted by the secure processing module

(note that some financial instrument may not have any encrypted term and/or

values, nor contain secure computation programs; that is, it’s possible to carry

out secure computation on conventional financial instruments by using secure

computation programs stored on the filesystem):

L. Keys to decrypt the encrypted values are retrieved.

ii. The decryption process is executed: note that the encrypted data of
some encryption methods do not have to be decrypted (eg. ho-
momorphic encryption and the encrypted shares of a secret sharing

scheme).

External data is retrieved from markets, as required by secure computation
programs:

1. Exemplarily, current public values of indices, shares, bonds, options,

ii.

38

futures and other financial instruments are obtained.
Exemplarily, the secret encrypted values of other financial in-
struments could be retrieved and used in the secure computation of

the present financial instrument.

Secure computation programs are executed by the secure cryptographic

module, that is, for every secure computation program:

L.

ii.

iil.

iv.

Get the type of secure computation program, as any of the described
within the present disclosure, but not strictly limited to them: Yao’s
garbled circuits and oblivious transfers, GMW circuits, secret
sharing, homomorphic encryption, ORAMs, or combinations thereof;
garbled circuits and oblivious transfer being the preferred one.
Check digital signatures of secure computation programs: if found
wrong, stop the execution.

Check digital signatures of the proofs: if found wrong, stop the

execution.

Validate that said secure computation programs are well-founded

according to their proofs: if found wrong, stop the execution.

Execute said secure computation programs:

1. Given the secure computation program, the financial in-
strument management system executes it using the adequate
library from the libraries for secure computation of the
financial instrument management system: said library could
be proprietary or open-source, in case more security through
transparency and peer-examination of the critical source
code is desired.

2. The secure computation program may need access to
external data sources, encrypted or not, during its execution:
by default is granted, unless a policy explicitly denies it.

3. At least a value is determined from said secure com-

putation.

Data resulting from the secure computation is sent to the markets by the

secure cryptographic module:

L.

Exemplarily, orders to take exposure in any financial instrument, in-

dependently of its readiness for secure computation.

39

L. Terms and/or values of the financial instrument are encrypted back by the
secure cryptographic module:
L. Keys to encrypt the encrypted values are retrieved.
ii. The encryption process is executed: some encryption methods
require the information to be encrypted back, such as authenticated

symmetric encryption and public key encryption.

J- Financial instruments are received by the secure processing module from the
secure cryptographic module.
k. The secure processing module sends to the network the resulting one or more
financial instruments, or stores them locally on the filesystem.
1. Alternatively, they could be deleted if they are deemed as not needed
anymore.
[0085] The following algorithms illustrates claims 5, 10 and 15.
[0086] ALGORITHM 6. Secure computation of proof-certified encrypted secure com-
putation programs on financial instruments.
[0087] a. The secure processing module obtains one or more financial instruments:
L. Said secure processing module listens for incoming connections that
contain financial instruments.
ii. Said secure processing module watches for changes on the

filesystem, and reads files whenever there is a change.

b. Secure computation programs are initialized by the secure cryptographic
module:
L. Secure computation programs could exist within financial in-
struments, or completely standalone on the filesystem.

ii. Memory is allocated and reserved.

c. Financial instruments are parsed and checked for correctness by the secure

processing module:

1. Syntactic validation is executed.
ii. Semantic validation is executed.
iil. Numeric values are checked against ranges of market data to detect

inconsistencies and outliers.
iv. Cryptographic signatures are checked, and the general correctness of
the encrypted data.

V. In case of error on any of the previous steps, the procedure stops.

40

Financial instruments are received by the secure cryptographic module from

the secure processing module.

Encrypted terms and/or values are decrypted by the secure processing module

(note that some financial instrument may not have any encrypted term and/or

values, nor contain secure computation programs; that is, it’s possible to carry

out secure computation on conventional financial instruments by using secure

computation programs stored on the filesystem):

L. Keys to decrypt the encrypted values are retrieved.

ii. The decryption process is executed: note that the encrypted data of
some encryption methods do not have to be decrypted (eg. ho-
momorphic encryption and the encrypted shares of a secret sharing

scheme).

External data is retrieved from markets, as required by secure computation

programs:

1. Exemplarily, current public values of indices, shares, bonds, options,
futures and other financial instruments are obtained.

ii. Exemplarily, the secret encrypted values of other financial in-
struments could be retrieved and used in the secure computation of

the present financial instrument.

Secure computation programs are executed by the secure cryptographic

module, that is, for every secure computation program:

L. Get the type of secure computation program, as any of the described
within the present disclosure, but not strictly limited to them:
reusable garbled circuits, circuits over secret sharing schemes,
circuits over homomorphic encryption schemes, cryptographically-
secure obfuscation, and combinations thereof; reusable garbled
circuits being the preferred one.

ii. Check digital signatures of secure computation programs: if found

wrong, stop the execution.

iil. Check digital signatures of the proofs: if found wrong, stop the
execution.

iv. Execute said secure computation programs:
1. Given the secure computation program, the financial in-

strument management system executes it using the adequate
library from the libraries for secure computation of the

financial instrument management system: said library could

[0088]

[0089]

41

be proprietary or open-source, in case more security through
transparency and peer-examination of the critical source
code is desired.

2. Validate during their execution that said secure computation
programs are sound and well-founded according to their
proofs: if found wrong, stop the execution.

3. The secure computation program may need access to
external data sources, encrypted or not, during its execution:

by default is granted, unless a policy explicitly denies it.

4. At least a value is determined from said secure com-
putation.
h. Data resulting from the secure computation is sent to the markets by the

secure cryptographic module:
L. Exemplarily, orders to take exposure in any financial instrument, in-

dependently of its readiness for secure computation.

L. Terms and/or values of the financial instrument are encrypted back by the
secure cryptographic module:
L. Keys to encrypt the encrypted values are retrieved.
ii. The encryption process is executed: some encryption methods
require the information to be encrypted back, such as authenticated

symmetric encryption and public key encryption.

J- Financial instruments are received by the secure processing module from the

secure cryptographic module.

k. The secure processing module sends to the network the resulting one or more
financial instruments, or stores them locally on the filesystem:
L. Alternatively, they could be deleted if they are deemed as not needed

anymore.

The logic flows depicted in the figures do not require the particular order shown, or
sequential order, to achieve the desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described flows, and other components
may be added to, or removed from, the described systems. Accordingly, other imple-
mentations are within the scope of the following claims.

A number of implementations of the present disclosure have been described.

[0090]

42

Although the subject matter has been described in language specific to the structural
features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above, and that various modifications may be made without departing from
the spirit and scope of the present disclosure. Rather, the specific features or acts
described above are disclosed as example forms of implementing the claims, and other
implementations are within the scope of the following claims.

I have therefore described an implementation of a financial instrument management
system enhanced with secure computation that uses the latest cryptographic techniques
to ultimately lower financial risks, improve yields, create new financial instruments
and provide new ways to package them and, in general, improve the performance of

markets and the price mechanism.

[Claim 1]

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

[Claim 6]

[Claim 7]

[Claim 8]

43

Claims

A financial instrument having at least a value determined by the result
of at least a secure computation program executed on at least one
computer device.

The financial instrument of claim 1, wherein said financial instrument
is converted from a financial instrument with no value determined by
the result of at least a secure computation program executed on at least
one computer device to a financial instrument with at least one
encrypted term and/or value.

The financial instrument of claim 1, wherein said financial instrument
is aggregated from financial instruments with no value determined by
the result of at least a secure computation program executed on at least
one computer device; and/or financial instruments with at least one
encrypted term and/or value.

The financial instrument of claim 1, wherein said financial instrument
contains a proof-certified secure computation program.

The financial instrument of claim 1, wherein said financial instrument
contains an encrypted proof-certified secure computation program.

A computer implemented method for securely computing one or more
financial instruments, the method comprising at least one or more of:
encrypting and/or decrypting terms and/or values of said financial in-
struments; and executing one or more secure computation programs on
said financial instruments using at least one privacy-preserving
protocol from a group of privacy-preserving protocols consisting of:
garbled circuits and oblivious transfers, GMW circuits, secret sharing,
homomorphic encryption, oblivious random access machines
(ORAMs), and combinations thereof.

The computer implemented method for securely computing one or
more financial instruments of claim 6, further comprising at least one
or more of: rewriting fields, terms and/or values of financial in-
struments; and generating secure computation programs; and cus-
tomising existing secure computation programs; and signing secure
computation programs; and including secure computation programs
within said financial instruments.

The computer implemented method for securely computing one or
more financial instruments of claim 6, further comprising at least one

or more of: creating an aggregate financial instrument; and generating

[Claim 9]

[Claim 10]

[Claim 11]

44

secure computation programs; and customising existing secure com-
putation programs; and signing secure computation programs; and
including secure computation programs within said financial in-
struments.

The computer implemented method for securely computing one or
more financial instruments of claim 6, further comprising at least one
or more of: obtaining existing proofs of secure computation programs;
and generating proofs of secure computation programs; and including
proofs of secure computation programs within said financial in-
struments; and validating proofs of secure computation programs; and
generating proof-certified secure computation programs; and cus-
tomising existing proof-certified secure computation programs; and
signing proof-certified secure computation programs; and including
proof-certified secure computation programs within said financial in-
struments.

The computer implemented method for securely computing one or
more financial instruments of claim 6, further comprising at least one
or more of: obtaining existing proofs of encrypted secure computation
programs; and generating proofs of encrypted secure computation
programs; and including proofs of encrypted secure computation
programs within said financial instruments; and validating proofs of
encrypted secure computation programs; and using privacy-preserving
protocols for encrypted secure computation programs: reusable garbled
circuits, circuits over secret sharing schemes, circuits over ho-
momorphic encryption schemes, cryptographically-secure obfuscation,
and combinations thereof; and generating encrypted proof-certified
secure computation programs; and customising existing encrypted
proof-certified secure computation programs; and signing encrypted
proof-certified secure computation programs; and including encrypted
proof-certified secure computation programs within said financial in-
struments.

A financial instrument management system executed on at least one
computer device, comprising: a secure processing module configured to
obtain one or more financial instruments, and to check the correctness
of said obtained financial instruments, and to keep the financial in-
struments resulting from the secure cryptographic module; and a secure
cryptographic module configured to receive said financial instruments

from said secure processing module, and to encrypt and/or decrypt

[Claim 12]

[Claim 13]

[Claim 14]

[Claim 15]

45

terms and/or values of said financial instruments, and to execute one or
more secure computation programs on said financial instruments using
at least one privacy-preserving protocol from a group of privacy-
preserving protocols consisting of: garbled circuits and oblivious
transfers, GMW circuits, secret sharing, homomorphic encryption,
oblivious random access machines (ORAMs), and combinations
thereof.

The financial instrument management system of claim 11, wherein said
secure processing module is additionally configured to rewrite fields,
terms and/or values of financial instruments, and wherein the secure
cryptographic module is additionally configured to at least one or more
of: generate secure computation programs; and customise existing
secure computation programs; and sign secure computation programs;
and include secure computation programs within said financial in-
struments.

The financial instrument management system of claim 11, wherein the
secure processing module is additionally configured to create an
aggregate financial instrument and wherein the secure cryptographic
module is additionally configured to at least one or more of: generate
secure computation programs; and customise existing secure com-
putation programs; and sign secure computation programs; and include
secure computation programs within said financial instruments.

The financial instrument management system of claim 11, wherein the
secure cryptographic module is additionally configured to at least one
or more of: obtain existing proofs of secure computation programs; and
generate proofs of secure computation programs; and include proofs of
secure computation programs within said financial instruments; and
validate proofs of secure computation programs; and generate proof-
certified secure computation programs; and customise existing proof-
certified secure computation programs; and sign proof-certified secure
computation programs; and include proof-certified secure computation
programs within said financial instruments.

The financial instrument management system of claim 11, wherein the
secure cryptographic module is additionally configured to at least one
or more of: obtain existing proofs of encrypted secure computation
programs; and generate proofs of encrypted secure computation
programs; and include proofs of encrypted secure computation

programs within said financial instruments; and validate proofs of

46

encrypted secure computation programs; and use privacy-preserving
protocols for encrypted secure computation programs: reusable garbled
circuits, circuits over secret sharing schemes, circuits over ho-
momorphic encryption schemes, cryptographically-secure obfuscation,
and combinations thereof; and generate encrypted proof-certified
secure computation programs; and customise existing encrypted proof-
certified secure computation programs; and sign encrypted proof-
certified secure computation programs; and include encrypted proof-
certified secure computation programs within said financial in-

struments.

47

Abstract

Systems, methods and financial instruments enhanced with secure computation. A financial in-
strument management system is implemented with secure computation capabilities, respecting
the privacy and secrecy rights during computation of the information contained within financial
instruments, external datasets and/or secure computation programs. Automatic conversion and
aggregation of conventional financial instruments is also disclosed. Furthermore, secure com-
putation programs can be certified with mathematical proofs about very advantageous and
valuable properties such as their correct termination, conformance to a specification, or any other
pre-conditions, post-conditions and invariants on their inputs and outputs, encrypted or in

plaintext form.

1/5

[Fig. 1]

2/5

[Fig. 2]

3/5

[Fig. 3]

4/5

[Fig. 4]

[Fig. 5]
900
) I
AN E E ! E
901 N E E
Walininiisnine 909
904 | 905
902] 907
| - AN AN AN AaAn 25

908

“““ 906

S\ Figure 9

[Fig. 6]

5/5

1000
\
1001 1002
|
1010
h 4
1011 1012 1020 1030
I |
1013 1014 ¢
> 1040 H
1015 1016
L
y
1050 «
7 | ! Figure 10

